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Abstract—Identifying the closest fog node is crucial for mobile
clients to benefit from fog computing. In this paper, we analyze
the performance of the Meridian and Vivaldi network coordinate
systems for this task. To that end, we simulate a dense fog
environment with mobile clients. We find that while network
coordinate systems really find fog nodes in close network prox-
imity, a purely latency-oriented identification approach ignores
the larger problem of balancing load across fog nodes.

I. INTRODUCTION

Fog computing bridges the gap between central cloud data
centers and mobile clients with intermediary and edge nodes
that provide computing services in close proximity [1]. To
benefit from this, clients must be able to identify their nearest
fog node, which is non-trivial in the loosely coupled fog [2].
Network-only techniques are insufficient as the node must also
be available and have sufficient capacity. Similarly, approaches
based on geographic location of nodes and clients ignore
network characteristics [3]. Fog node selection is a contin-
uous process as clients are usually mobile, e.g., connected
vehicles or IoT devices, changing their network and physical
position [4]. The naive approach of probing each node in the
network will theoretically lead to a perfect result but is not
scalable due to the large communication overhead.

There exist some approaches for identifying a nearest node
for peer-to-peer (P2P) systems, yet it is unclear if those can
directly be applied to fog computing. In this paper, we aim to
close this gap by applying the Meridian [5] and Vivaldi [6]
network coordinate systems to fog computing. We analyze the
performance of both systems in a simulation of mobile clients
moving through a distributed fog network.1

II. SIMULATION

We simulate a fog network with mobile clients in a 2.25 km2

area in Berlin, Germany for ten minutes using SimPy [8].2

Clients in our simulation follow predefined movement patterns
obtained from the Open Berlin Scenario [9]. Clients peri-
odically send tasks to the fog platform, measuring response
latency. There are 29 fog nodes in this area, based on cell
tower locations [10]. To abstract from heterogeneous hardware
resources, each node has a number of “slots”, i.e., concurrent
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1An extended version of this paper is available as technical report [7].
2https://github.com/pfandzelter/nearest-fog-nodes

client tasks it can fulfill. We assign the number of client slots
randomly, with a total of 318 available slots. To observe the
impact of client load on NCS behavior, we vary the ratio
between total available slots and clients between 0.1 and 1.0.

Communication latency between parties is based on trans-
mission, propagation, processing, and queuing delays, using
values given by Burk and Lemberg [11]. We compare the
Meridian and Vivaldi NCS with a baseline and a random se-
lection approach. The baseline is the theoretical optimal node
selection based on the omniscient simulation environment.

III. RESULTS

The total number of messages per client (Fig. 1a) increases
with client ratio, likely caused by nodes not being able to
accept client requests. We see that Meridian has a higher
number of messages with low client ratios but is more scalable
than Vivaldi and our baseline at higher ratios.

Vivaldi and the baseline show higher numbers of lost client
messages, which occurs when the fog node is overloaded and
cannot process more tasks (Fig. 1b). As a result of unprocessed
tasks, we observe higher reconnections for clients (Fig. 1c).

The rate of optimal node selection is 100% for the baseline
but less than 10% for all other techniques, including the
random approach. Nevertheless, Meridian and Vivaldi show a
low RMSE selection error in terms of additional network delay
over the optimal node selection. While they mostly cannot find
the optimal node, both NCS find good nodes.

The mean communication latency from clients to identified
fog nodes (Fig. 2a) increases with client ratio because of
increased load on the fog platform and decreased bandwidth
available per client. The baseline and Vivaldi show higher
mean latency per client compared to Meridian and the random
approach, which we explain with the uniqueness of node
selection (Fig. 2c). Because the baseline and Vivaldi do not
distribute the load of the clients over the entire network, the
bandwidth of these nodes decreases. This translates into a
higher transmission and queuing delay. By not accounting for
fog nodes with less capacity the random approach overloads
these nodes, leading to increased latency. Only the Meridian
system is aware of the resources of the fog nodes as fully
loaded nodes do not take part in the selection process.

We show the error between achieved RTT and optimal RTT
in Fig. 2b. Surprisingly, we observe the highest connection
error for Vivaldi, especially in the higher client ratios.
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Fig. 1: Number of messages handled per client for each of the tested algorithms. The total number of messages (Fig. 1a) grows
with higher client ratios, with baseline requiring the most messages. With increasing client ratios, the number of lost messages
per client (Fig. 1b) and number of reconnections per client (Fig. 1c) also grows for all tested algorithms, with the Meridian
approach requiring the least messages at higher ratios.
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Fig. 2: Actual client access latency also depends on available slots and available bandwidth, and surprisingly the mean latency
results (Fig. 2a) show the random approach outperforming others with low client ratios. At higher client ratios, Meridian is
best. Both approaches are good at load balancing (higher number of unique node selections, Fig. 2c), reducing additional delay
caused by reconnection and limited bandwidth.

IV. CONCLUSION

The results of our simulation show that NCS are powerful
techniques to find nearest nodes in a distributed system that
consider real network distance instead of, e.g., geographical
location. Surprisingly, however, we find that identifying the
closest node is often not of upmost concern to clients in a fog
network as dense as that of our simulation: In most cases, the
additional latency of suboptimal nodes was negligible. Instead,
we find the major driver for the efficiency of a node selection
algorithm to be how well it balances load across fog nodes.
For future research we thus suggest focussing on distributed
load balancing within bounds of service-level objectives.
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