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ABSTRACT
Private and public actors are building massive LEO satellite com-
munication networks. Researchers have proposed extending edge
computing to satellites for global low-latency access to application
services for, e.g., IoT or metaverses. Building applications for this
LEO edge means managing services at large scale on highly dy-
namic infrastructure, in addition to the usual constraints of edge
computing.

We seek to develop serverless abstractions for LEO edge applica-
tions. We introduce virtual testbed tooling that allows researchers,
students, and practitioners to become familiar with the unique char-
acteristics of the LEO edge and develop, test, and benchmark real
software in a cost-efficient manner. Further, we develop abstractions
for state and data management in geo-distributed edge-to-cloud en-
vironments. We then integrate these abstractions with a lightweight
FaaS platform to allow building stateful yet scalable applications
on the LEO edge. Finally, we propose applications for LEO edge
computing to guide the evaluation of our design.

CCS CONCEPTS
• Information systems→ Computing platforms; • Software
and its engineering→Development frameworks and environments;
• Computer systems organization→ Distributed architectures.
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1 INTRODUCTION
Large low-Earth orbit (LEO) satellite constellations, such as those
in development by SpaceX, OneWeb, and public space agencies, can
provide global Internet access with high bandwidth and low latency.
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Figure 1: Subscribers access the Internet through the LEO
network, connecting to the closest satellite, which in turn
routes to an uplink station using ISLs. The LEO edge extends
this with compute processors at each satellite, offering appli-
cation services with lower latency and higher bandwidth.

Comprising thousands of satellites at altitudes below 2,000km con-
nected with inter-satellite links (ISL), LEO satellite networks will
extend the coverage of sixth generation (6G) mobile networks to
remote and rural areas as well as ships and planes [5, 34].

A key consideration of this 6G integration is the extension of
edge computing to LEO networks [36]. As shown in Figure 1, the
LEO edge could provide low-latency, high-bandwidth application
service access to a global subscriber base, supporting domains such
as the Internet of Things (IoT), connected vehicles, and metaverses
in AR/VR [6]. This is especially relevant as subscribers without
sufficient access to terrestrial fiber are more likely to also lack
cloud data centers in their proximity, given that cloud locations are
predominantly located close to rich, urban areas [18].

From a software development perspective, building applications
for terrestrial edge computing already poses significant challenges,
from data management across geo-distributed locations to building
scalable compute services on constrained edge hardware [4]. The
LEO edge exacerbates this with two unique new challenges: First,
the immense scale of LEO networks (the first generation SpaceX
Starlink has more than 4,000 operational satellites [14]) means that
applications services will need to be operated across thousands
of geo-distributed, shared edge servers. Second, LEO satellites are
highlymobile as a result of their low altitude. For example, a Starlink
satellite (550km altitude) travels at speeds in excess of 27,000km/h,
orbiting the Earth once every 95 minutes [7]. A subscriber on Earth
will switch their uplink satellites every few minutes, meaning that
LEO edge applications have to be migrated accordingly.

In this work, we propose using serverless abstractions to enable
LEO edge computing. The main idea of serverless is to hide op-
erational concerns from developers, providing a scalable, elastic,
and flexible platform for applications [12, 13]. At the same time,
operators benefit from being able to allocate their (possibly limited)
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resources at fine granularity. Serverless allows us to abstract away
the dynamic and large-scale LEO edge while making the most out
of the constrained resources. We make the following contributions:

• To better understand the characteristics of the LEO edge and
to be able to evaluate LEO edge platform abstractions, we
design a virtual testbed tool (§2).

• We propose a data management platform for geo-distributed
edge computing with application-controlled replica place-
ment (§3).

• We design a computing platform for the LEO edge based on
the Function-as-a-Service (FaaS) paradigm (§4).

• Finally, we discuss possible LEO edge applications (§5).

2 LEO EDGE TESTBED
Research on and development of applications and software plat-
forms for the LEO edge is hindered by two challenges: First, there
is no existing LEO edge infrastructure to explore and test soft-
ware on. And second, even if prototypical infrastructure is being
developed [38], the barrier to entry is high, making development
processes cumbersome and expensive.

Instead, researchers usually turn to virtual testbed tooling that
allows running distributed software in emulation. Existing tool-
ing for edge computing, e.g., EmuFog [17], FogBed [9], and Mock-

Fog [10, 11], is insufficient for LEO edge: First, LEO satellites are
highly mobile, requiring us to change emulated network behavior
at fine granularity, e.g., every second, which not all tools support.
Second, satellite networks comprise thousands of satellites that
could all serve as edge servers and which must thus all be emulated.
Third, research on platforms and abstractions requires support of
arbitrary software on the testbed, including isolation technologies
such as Docker, which means that a testbed that itself relies on, e.g.,
containerization for isolation, is inherently too limited.

To meet all of these requirements, we propose Celestial [22, 24,
28], virtual testbed tooling for the LEO edge. Celestial combines
a high-performance LEO satellite network simulation tool [15]
with Firecracker microVMs [1]. With Firecracker, we are able to
efficiently emulate many satellite edge servers on limited infras-
tructure, with support for scaling across multiple host servers. Mi-
croVMs also allow us to run a full virtual machine for each edge
server, including support for arbitrary Linux-based software. Fur-
ther, we can leverage the homogenous nature of the LEO edge: As
each LEO edge server must be identical, we implement an overlay
file system in Celestial that allows us to give each virtual edge
server access to a full-size file system without blocking more than
a few hundred megabytes on the underlying hosts.

As most edge software serves a limited geographical area, e.g.,
clients in a specific country, we also introduce a ‘bounding box’
for experiments that only require emulating a subset of satellite
servers. As satellites are highly mobile, we suspend servers that
move outside this bounding box and restore them when moving
back into the area of interest.

Future Work. Celestial is based on the standard Linux traffic control
utility that allows us to emulate network delays and bandwidth con-
straints between network devices [8]. While this approach is used in
most edge testbed tooling, our work on Celestial has revealed scal-
ability issues when reaching thousands of emulated connections.

We have thus developed a new approach for network emulation on
Linux using extended Berkeley Packet Filters (eBPF) [2], and we
plan to integrate this into Celestial in the future.

Further, we have developed a taxonomy of failure scenarios that
could affect LEO edge software [26]. To allow developing resilient
LEO edge software and platform abstractions, we plan to integrate
failure emulation in Celestial.

3 GEO-DISTRIBUTED DATA STORE
The basic functionality of an edge network is low-latency, high-
bandwidth access to local data replicas, e.g., content delivery net-
works (CDNs). For edge applications, regardless of whether they
run on satellite or terrestrial edge infrastructure, managing data
replication across geo-distributed edge nodes is challenging. For
example, data replication requires long-running services at each
node, managing data consistency, and coordination among nodes.

Instead of each application solving these issues anew, we propose
a serverless geo-distributed data store. ‘Serverless’ here refers to the
fact that the data store itself is run by some infrastructure provider,
e.g., one that also provides the edge resources. Applications only
configure replication policies and access their data using a scal-
able interface. FReD (Fog Replicated Data) [32] implements this
using keygroups, logical data capsules. Keygroups are FReD’s unit
of replication, and applications simply specify at which location
they want keygroup data replicated. As clients move, keygroups
can thus move alongside by changing their replication policy.

Clients can access data in FReD using a simple key-value inter-
face. We implement client-centric consistency guarantees using a
local client library. Regardless of which FReD node the client ac-
cesses, the library caches seen data version information and ensures
ordered reads and writes [3].

Future Work. Although our client library can detect version con-
flicts, it cannot automatically resolve them as correct conflict reso-
lution depends on application logic. Instead, applications currently
get all concurrent versions of data items for resolution, somewhat
breaking the serverless abstractions. In future work, we plan to
directly offer convergent and commutative replicated data types
(CRDT) [35] in our library in order to let applications specify con-
flict resolution logic rather than implementing it themselves.

A further research area is coordination between nodes for con-
trol flow. FReD currently relies on a centralized naming service
that provides a single source of truth about nodes, keygroups, and
replication policies. Network partitions, which are likely in geo-
distributed edge-to-cloud systems, can thus lead to node failures.We
have instead proposed peer-to-peer coordination for FReD features,
e.g., only replica nodes of a keygroup, which are likely to be geo-
graphically close, need to coordinate keygroup information [33].

4 SERVERLESS EDGE COMPUTE PLATFORM
Edge servers are more resource constrained than the cloud, with
many single-node deployments across a geo-distributed area rather
than a centralized data center. As a result, resource allocation at the
edge between multiple tenants with varying resource requirements
requires more fine-grained and elastic sharing. With scale-to-zero
and allocation-per-invocation, the Function-as-a-Service (FaaS) par-
adigm is a good fit for addressing these challenges [19]: In FaaS,
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developers compose their applications of small, stateless functions
that are invoked by an underlying platform in response to external
events. The platform is responsible for scaling services elastically
with demand, allowing developers to focus on application logic
rather than operational concerns. Operators can allocate resources
dynamically and bin-pack tenant services more efficiently [12, 13].

Existing FaaS platforms focus on cloud-scale deployments, using
complex dependencies such as Kubernetes [16]. We thus propose
tinyFaaS [20], a lightweight FaaS platform designed specifically for
single-node deployment at the edge. By removing dependencies
such as Kubernetes and multi-node load balancers from the invo-
cation hot-path, tinyFaaS can achieve a smaller footprint, increase
throughput, and decrease request-response latency, which is of
utmost importance for latency-constrained edge applications.

While a lightweight FaaS platform allows efficient deployment
of stateless edge applications by multiple tenants, a key inhibitor to
broad FaaS adoption is that stateful applications must still rely on
external data stores. While manageable in the cloud (although not
necessarily cost-effective [31]), incorporating a cloud database in
an edge FaaS application removes the benefits of edge computing.
A local edge database is more suitable, yet managing data replica-
tion across geo-distributed edge FaaS deployments is cumbersome.
With Enoki [27] we integrate tinyFaaS with FReD, building a com-
bined serverless platform for geo-distributed edge deployments
that supports stateful applications. In Enoki, each node runs both
a tinyFaaS instance and FReD node. When deploying a function,
Enoki injects a database connection into the function handler and
creates a FReD keygroup. If the function already exists on another
node, the keygroup is simply replicated. Function code can thus rely
on state using a key-value interface. Replication across edge nodes
can lead to data staleness but ensures that all requests are made to
a local copy of the data, without breaking FaaS transparency.

Future Work. The benefits of FaaS for the edge also apply to LEO
edge computing. Here, an additional benefit of the high level of
abstraction and separation of state and compute service is that
service migration can be implemented easily [30]. Using ‘virtual
stationarity’, i.e., migrating compute services to counteract the or-
bital movement of satellites, edge services can remain in proximity
to the clients they serve without explicit support by the application.

Consequently, we plan to orchestrate Enoki deployments on
the LEO edge for virtual stationarity, autonomously redeploying
functions and keygroup replicas as satellites move. We will use
Celestial testbeds to conduct our experiments.

We also plan to evaluate more sophisticated migration strategies:
We have proposed an algorithm for service placement on LEO
networks based on service level objectives using the unique 2D
torus topologies of ISLs [23]. Such a placement for function and
data replicas may uncover trade-offs between application service
migration cost and the detriment of larger service access latency.

5 LEO EDGE APPLICATIONS
As one of the most widespread edge applications, CDNs serve local
copies of web content, e.g., images or stylesheets, from points-of-
presence (PoP) in proximity of clients rather than clients having to
pull them from far-away origin locations. Traditional CDN topolo-
gies leverage the hierarchical nature of the Internet, placing PoPs in

tier 2 or tier 3 regional networks [37]. In the flat hierarchy of LEO
networks, where all global subscribers share an access network, it
may instead make sense to place PoPs directly on satellites, serving
content just one hop from clients. We have proposed to use simple
migration techniques that counteract orbital movements to ensure
web content is served only in a limited geographical area [21].

While applications of the LEO edge may be limited to clients
without access to terrestrial fiber, an interesting future application
of our research is a Mars compute cloud [25]: For sparse human set-
tlement on Mars, satellite-based networking is more cost-efficient
than networks on the ground given satellite networks’ planet-wide
coverage and high landing costs. A Mars satellite network could
also serve as a local edge compute cluster, supporting, e.g., Mars-
to-Mars communication, sensor networks, or industrial IoT.

Future Work. The applications of LEO edge computing must be kept
in mind when evaluating how well serverless abstractions and com-
pute platforms can solve its salient challenges. Similarly, we have
previously argued that the quantitative evaluation of edge compute
and data management platforms must be application-centric [29].
We plan to extend our survey of LEO edge applications in the fu-
ture in order to define meaningful quality metrics and evaluation
scenarios. We must also evaluate how applications that are latency-
constrained yet not event-driven, e.g., live video communication,
can be implemented with serverless abstractions.

6 CONCLUSION
The integration of large LEO satellite networks with edge comput-
ing raises new challenges for application developers, including high
network dynamics and extraordinary scale and geo-distribution.We
have proposed serverless abstractions for data and compute service
management on the LEO edge, lowering complexity for developers
and increasing flexibility and efficiency for operators. We have fur-
ther introduced virtual LEO edge testbed tooling for researchers,
students, and practitioners to build and evaluate software and plat-
forms without access to physical satellite infrastructure. Finally, we
have proposed possible applications of LEO edge computing that
will guide the evaluation of our proposed abstractions.
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