
Serverless Abstractions for Edge Computing in Large Low-Earth
Orbit Satellite Networks

Tobias Pfandzelter
TU Berlin & ECDF
Berlin, Germany

tp@mcc.tu-berlin.de

ABSTRACT
Private and public actors are building massive LEO satellite com-
munication networks. Researchers have proposed extending edge
computing to satellites for global low-latency access to application
services for, e.g., IoT or metaverses. Building applications for this
LEO edge means managing services at large scale on highly dy-
namic infrastructure, in addition to the usual constraints of edge
computing.

We seek to develop serverless abstractions for LEO edge applica-
tions. We introduce virtual testbed tooling that allows researchers,
students, and practitioners to become familiar with the unique char-
acteristics of the LEO edge and develop, test, and benchmark real
software in a cost-efficient manner. Further, we develop abstractions
for state and data management in geo-distributed edge-to-cloud en-
vironments. We then integrate these abstractions with a lightweight
FaaS platform to allow building stateful yet scalable applications
on the LEO edge. Finally, we propose applications for LEO edge
computing to guide the evaluation of our design.

CCS CONCEPTS
• Information systems→ Computing platforms; • Software
and its engineering→Development frameworks and environments;
• Computer systems organization→ Distributed architectures.

KEYWORDS
LEO satellite networks, edge computing, serverless

ACM Reference Format:
Tobias Pfandzelter. 2023. Serverless Abstractions for Edge Computing in
Large Low-Earth Orbit Satellite Networks. InMiddleware Demos, Posters and

Doctoral Symposium ’23: Proceedings of the 24th International Middleware

Conference Demos, Posters and Doctoral Symposium (Middleware Demos,

Posters and Doctoral Symposium ’23), December 11–15, 2023, Bologna, Italy.

ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3626564.3629088

1 INTRODUCTION
Large low-Earth orbit (LEO) satellite constellations, such as those
in development by SpaceX, OneWeb, and public space agencies, can
provide global Internet access with high bandwidth and low latency.

Middleware Demos, Posters and Doctoral Symposium ’23, December 11–15, 2023, Bologna,

Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Middleware Demos,

Posters and Doctoral Symposium ’23: Proceedings of the 24th International Middleware

Conference Demos, Posters and Doctoral Symposium (Middleware Demos, Posters and

Doctoral Symposium ’23), December 11–15, 2023, Bologna, Italy, https://doi.org/10.1145/
3626564.3629088.

Inter-Satellite
Link (ISL)

Subscriber Uplink Station

Ground-to-Sat
Link

LEO Edge Compute
Processor

<2,000km
Altitude

Figure 1: Subscribers access the Internet through the LEO
network, connecting to the closest satellite, which in turn
routes to an uplink station using ISLs. The LEO edge extends
this with compute processors at each satellite, offering appli-
cation services with lower latency and higher bandwidth.

Comprising thousands of satellites at altitudes below 2,000km con-
nected with inter-satellite links (ISL), LEO satellite networks will
extend the coverage of sixth generation (6G) mobile networks to
remote and rural areas as well as ships and planes [5, 34].

A key consideration of this 6G integration is the extension of
edge computing to LEO networks [36]. As shown in Figure 1, the
LEO edge could provide low-latency, high-bandwidth application
service access to a global subscriber base, supporting domains such
as the Internet of Things (IoT), connected vehicles, and metaverses
in AR/VR [6]. This is especially relevant as subscribers without
sufficient access to terrestrial fiber are more likely to also lack
cloud data centers in their proximity, given that cloud locations are
predominantly located close to rich, urban areas [18].

From a software development perspective, building applications
for terrestrial edge computing already poses significant challenges,
from data management across geo-distributed locations to building
scalable compute services on constrained edge hardware [4]. The
LEO edge exacerbates this with two unique new challenges: First,
the immense scale of LEO networks (the first generation SpaceX
Starlink has more than 4,000 operational satellites [14]) means that
applications services will need to be operated across thousands
of geo-distributed, shared edge servers. Second, LEO satellites are
highlymobile as a result of their low altitude. For example, a Starlink
satellite (550km altitude) travels at speeds in excess of 27,000km/h,
orbiting the Earth once every 95 minutes [7]. A subscriber on Earth
will switch their uplink satellites every few minutes, meaning that
LEO edge applications have to be migrated accordingly.

In this work, we propose using serverless abstractions to enable
LEO edge computing. The main idea of serverless is to hide op-
erational concerns from developers, providing a scalable, elastic,
and flexible platform for applications [12, 13]. At the same time,
operators benefit from being able to allocate their (possibly limited)

https://orcid.org/0000-0002-7868-8613
https://doi.org/10.1145/3626564.3629088
https://doi.org/10.1145/3626564.3629088
https://doi.org/10.1145/3626564.3629088


Middleware Demos, Posters and Doctoral Symposium ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter

resources at fine granularity. Serverless allows us to abstract away
the dynamic and large-scale LEO edge while making the most out
of the constrained resources. We make the following contributions:

• To better understand the characteristics of the LEO edge and
to be able to evaluate LEO edge platform abstractions, we
design a virtual testbed tool (§2).

• We propose a data management platform for geo-distributed
edge computing with application-controlled replica place-
ment (§3).

• We design a computing platform for the LEO edge based on
the Function-as-a-Service (FaaS) paradigm (§4).

• Finally, we discuss possible LEO edge applications (§5).

2 LEO EDGE TESTBED
Research on and development of applications and software plat-
forms for the LEO edge is hindered by two challenges: First, there
is no existing LEO edge infrastructure to explore and test soft-
ware on. And second, even if prototypical infrastructure is being
developed [38], the barrier to entry is high, making development
processes cumbersome and expensive.

Instead, researchers usually turn to virtual testbed tooling that
allows running distributed software in emulation. Existing tool-
ing for edge computing, e.g., EmuFog [17], FogBed [9], and Mock-

Fog [10, 11], is insufficient for LEO edge: First, LEO satellites are
highly mobile, requiring us to change emulated network behavior
at fine granularity, e.g., every second, which not all tools support.
Second, satellite networks comprise thousands of satellites that
could all serve as edge servers and which must thus all be emulated.
Third, research on platforms and abstractions requires support of
arbitrary software on the testbed, including isolation technologies
such as Docker, which means that a testbed that itself relies on, e.g.,
containerization for isolation, is inherently too limited.

To meet all of these requirements, we propose Celestial [22, 24,
28], virtual testbed tooling for the LEO edge. Celestial combines
a high-performance LEO satellite network simulation tool [15]
with Firecracker microVMs [1]. With Firecracker, we are able to
efficiently emulate many satellite edge servers on limited infras-
tructure, with support for scaling across multiple host servers. Mi-
croVMs also allow us to run a full virtual machine for each edge
server, including support for arbitrary Linux-based software. Fur-
ther, we can leverage the homogenous nature of the LEO edge: As
each LEO edge server must be identical, we implement an overlay
file system in Celestial that allows us to give each virtual edge
server access to a full-size file system without blocking more than
a few hundred megabytes on the underlying hosts.

As most edge software serves a limited geographical area, e.g.,
clients in a specific country, we also introduce a ‘bounding box’
for experiments that only require emulating a subset of satellite
servers. As satellites are highly mobile, we suspend servers that
move outside this bounding box and restore them when moving
back into the area of interest.

Future Work. Celestial is based on the standard Linux traffic control
utility that allows us to emulate network delays and bandwidth con-
straints between network devices [8]. While this approach is used in
most edge testbed tooling, our work on Celestial has revealed scal-
ability issues when reaching thousands of emulated connections.

We have thus developed a new approach for network emulation on
Linux using extended Berkeley Packet Filters (eBPF) [2], and we
plan to integrate this into Celestial in the future.

Further, we have developed a taxonomy of failure scenarios that
could affect LEO edge software [26]. To allow developing resilient
LEO edge software and platform abstractions, we plan to integrate
failure emulation in Celestial.

3 GEO-DISTRIBUTED DATA STORE
The basic functionality of an edge network is low-latency, high-
bandwidth access to local data replicas, e.g., content delivery net-
works (CDNs). For edge applications, regardless of whether they
run on satellite or terrestrial edge infrastructure, managing data
replication across geo-distributed edge nodes is challenging. For
example, data replication requires long-running services at each
node, managing data consistency, and coordination among nodes.

Instead of each application solving these issues anew, we propose
a serverless geo-distributed data store. ‘Serverless’ here refers to the
fact that the data store itself is run by some infrastructure provider,
e.g., one that also provides the edge resources. Applications only
configure replication policies and access their data using a scal-
able interface. FReD (Fog Replicated Data) [32] implements this
using keygroups, logical data capsules. Keygroups are FReD’s unit
of replication, and applications simply specify at which location
they want keygroup data replicated. As clients move, keygroups
can thus move alongside by changing their replication policy.

Clients can access data in FReD using a simple key-value inter-
face. We implement client-centric consistency guarantees using a
local client library. Regardless of which FReD node the client ac-
cesses, the library caches seen data version information and ensures
ordered reads and writes [3].

Future Work. Although our client library can detect version con-
flicts, it cannot automatically resolve them as correct conflict reso-
lution depends on application logic. Instead, applications currently
get all concurrent versions of data items for resolution, somewhat
breaking the serverless abstractions. In future work, we plan to
directly offer convergent and commutative replicated data types
(CRDT) [35] in our library in order to let applications specify con-
flict resolution logic rather than implementing it themselves.

A further research area is coordination between nodes for con-
trol flow. FReD currently relies on a centralized naming service
that provides a single source of truth about nodes, keygroups, and
replication policies. Network partitions, which are likely in geo-
distributed edge-to-cloud systems, can thus lead to node failures.We
have instead proposed peer-to-peer coordination for FReD features,
e.g., only replica nodes of a keygroup, which are likely to be geo-
graphically close, need to coordinate keygroup information [33].

4 SERVERLESS EDGE COMPUTE PLATFORM
Edge servers are more resource constrained than the cloud, with
many single-node deployments across a geo-distributed area rather
than a centralized data center. As a result, resource allocation at the
edge between multiple tenants with varying resource requirements
requires more fine-grained and elastic sharing. With scale-to-zero
and allocation-per-invocation, the Function-as-a-Service (FaaS) par-
adigm is a good fit for addressing these challenges [19]: In FaaS,



Serverless Abstractions for Edge Computing in Large Low-Earth Orbit Satellite NetworksMiddleware Demos, Posters and Doctoral Symposium ’23, December 11–15, 2023, Bologna, Italy

developers compose their applications of small, stateless functions
that are invoked by an underlying platform in response to external
events. The platform is responsible for scaling services elastically
with demand, allowing developers to focus on application logic
rather than operational concerns. Operators can allocate resources
dynamically and bin-pack tenant services more efficiently [12, 13].

Existing FaaS platforms focus on cloud-scale deployments, using
complex dependencies such as Kubernetes [16]. We thus propose
tinyFaaS [20], a lightweight FaaS platform designed specifically for
single-node deployment at the edge. By removing dependencies
such as Kubernetes and multi-node load balancers from the invo-
cation hot-path, tinyFaaS can achieve a smaller footprint, increase
throughput, and decrease request-response latency, which is of
utmost importance for latency-constrained edge applications.

While a lightweight FaaS platform allows efficient deployment
of stateless edge applications by multiple tenants, a key inhibitor to
broad FaaS adoption is that stateful applications must still rely on
external data stores. While manageable in the cloud (although not
necessarily cost-effective [31]), incorporating a cloud database in
an edge FaaS application removes the benefits of edge computing.
A local edge database is more suitable, yet managing data replica-
tion across geo-distributed edge FaaS deployments is cumbersome.
With Enoki [27] we integrate tinyFaaS with FReD, building a com-
bined serverless platform for geo-distributed edge deployments
that supports stateful applications. In Enoki, each node runs both
a tinyFaaS instance and FReD node. When deploying a function,
Enoki injects a database connection into the function handler and
creates a FReD keygroup. If the function already exists on another
node, the keygroup is simply replicated. Function code can thus rely
on state using a key-value interface. Replication across edge nodes
can lead to data staleness but ensures that all requests are made to
a local copy of the data, without breaking FaaS transparency.

Future Work. The benefits of FaaS for the edge also apply to LEO
edge computing. Here, an additional benefit of the high level of
abstraction and separation of state and compute service is that
service migration can be implemented easily [30]. Using ‘virtual
stationarity’, i.e., migrating compute services to counteract the or-
bital movement of satellites, edge services can remain in proximity
to the clients they serve without explicit support by the application.

Consequently, we plan to orchestrate Enoki deployments on
the LEO edge for virtual stationarity, autonomously redeploying
functions and keygroup replicas as satellites move. We will use
Celestial testbeds to conduct our experiments.

We also plan to evaluate more sophisticated migration strategies:
We have proposed an algorithm for service placement on LEO
networks based on service level objectives using the unique 2D
torus topologies of ISLs [23]. Such a placement for function and
data replicas may uncover trade-offs between application service
migration cost and the detriment of larger service access latency.

5 LEO EDGE APPLICATIONS
As one of the most widespread edge applications, CDNs serve local
copies of web content, e.g., images or stylesheets, from points-of-
presence (PoP) in proximity of clients rather than clients having to
pull them from far-away origin locations. Traditional CDN topolo-
gies leverage the hierarchical nature of the Internet, placing PoPs in

tier 2 or tier 3 regional networks [37]. In the flat hierarchy of LEO
networks, where all global subscribers share an access network, it
may instead make sense to place PoPs directly on satellites, serving
content just one hop from clients. We have proposed to use simple
migration techniques that counteract orbital movements to ensure
web content is served only in a limited geographical area [21].

While applications of the LEO edge may be limited to clients
without access to terrestrial fiber, an interesting future application
of our research is a Mars compute cloud [25]: For sparse human set-
tlement on Mars, satellite-based networking is more cost-efficient
than networks on the ground given satellite networks’ planet-wide
coverage and high landing costs. A Mars satellite network could
also serve as a local edge compute cluster, supporting, e.g., Mars-
to-Mars communication, sensor networks, or industrial IoT.

Future Work. The applications of LEO edge computing must be kept
in mind when evaluating how well serverless abstractions and com-
pute platforms can solve its salient challenges. Similarly, we have
previously argued that the quantitative evaluation of edge compute
and data management platforms must be application-centric [29].
We plan to extend our survey of LEO edge applications in the fu-
ture in order to define meaningful quality metrics and evaluation
scenarios. We must also evaluate how applications that are latency-
constrained yet not event-driven, e.g., live video communication,
can be implemented with serverless abstractions.

6 CONCLUSION
The integration of large LEO satellite networks with edge comput-
ing raises new challenges for application developers, including high
network dynamics and extraordinary scale and geo-distribution.We
have proposed serverless abstractions for data and compute service
management on the LEO edge, lowering complexity for developers
and increasing flexibility and efficiency for operators. We have fur-
ther introduced virtual LEO edge testbed tooling for researchers,
students, and practitioners to build and evaluate software and plat-
forms without access to physical satellite infrastructure. Finally, we
have proposed possible applications of LEO edge computing that
will guide the evaluation of our proposed abstractions.

ACKNOWLEDGMENTS
I thankmy advisor Prof. Dr.-Ing. David Bermbach for his continuing
support and guidance. This work was supported by the Bundesmin-
isterium für Bildung und Forschung (16KISK183) and the Deutsche
Forschungsgemeinschaft (415899119).

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In Proceedings of the 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI ’20). USENIX
Association, Berkeley, CA, USA, 419–434.

[2] Soeren Becker, Tobias Pfandzelter Pfandzelter, Nils Japke, David Bermbach, and
Odej Kao. 2022. Network Emulation in Large-Scale Virtual Edge Testbeds: A Note
of Caution and theWay Forward. In Proceedings of the 2nd International Workshop

on Testing Distributed Internet of Things Systems (Asilomar, CA, USA) (TDIS 2022).
IEEE, New York, NY, USA, 1–7. https://doi.org/10.1109/IC2E55432.2022.00007

[3] David Bermbach, Jörn Kuhlenkamp, Bugra Derre, Markus Klems, and Stefan
Tai. 2013. A Middleware Guaranteeing Client-Centric Consistency on Top of
Eventually Consistent Datastores. In Proceedings of the 1st IEEE International

Conference on Cloud Engineering (San Francisco, CA, USA) (IC2E 2013). IEEE, New
York, NY, USA, 114–123. https://doi.org/10.1109/IC2E.2013.32

https://doi.org/10.1109/IC2E55432.2022.00007
https://doi.org/10.1109/IC2E.2013.32


Middleware Demos, Posters and Doctoral Symposium ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter

[4] David Bermbach, Frank Pallas, David García Pérez, Pierluigi Plebani, Maya Ander-
son, Ronen Kat, and Stefan Tai. 2017. A Research Perspective on Fog Computing.
In Proceedings of the 2nd Workshop on IoT Systems Provisioning & Management

for Context-Aware Smart Cities (Malaga, Spain) (ISYCC 2017). Springer, Cham,
Switzerland, 198–210. https://doi.org/10.1007/978-3-319-91764-1_16

[5] Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi Bozkurt, Anthony Aguirre,
Balakrishnan Chandrasekaran, Brighten P. Godfrey, Gregory Laughlin, Bruce
Maggs, and Ankit Singla. 2018. Gearing up for the 21st Century Space Race. In
Proceedings of the 17th ACM Workshop Hot Topics in Networks (Redmond, WA,
USA) (HotNets ’18). Association for Computing Machinery, New York, NY, USA,
113–119. https://doi.org/10.1145/3286062.3286079

[6] Debopam Bhattacherjee, Simon Kassing, Melissa Licciardello, and Ankit Singla.
2020. In-orbit Computing: An Outlandish thought Experiment?. In Proceedings

of the 19th ACM Workshop Hot Topics in Networks (Virtual Event, USA) (HotNets
’20). Association for Computing Machinery, New York, NY, USA, 197–204. https:
//doi.org/10.1145/3422604.3425937

[7] Debopam Bhattacherjee and Ankit Singla. 2019. Network Topology Design at
27,000 km/hour. In Proceedings of the 15th International Conference on Emerg-

ing Network Experiments And Technologies (Orlando, FL, USA) (CoNEXT ’19).
Association for Computing Machinery, New York, NY, USA, 341–354. https:
//doi.org/10.1145/3359989.3365407

[8] Martin A. Brown. 2006. Traffic Control HOWTO. Technical Report 102. The
Linux Documentation Project. https://tldp.org/HOWTO/pdf/Traffic-Control-
HOWTO.pdf

[9] Antonio Coutinho, Fabiola Greve, Cassio Prazeres, and Joao Cardoso. 2018.
Fogbed: A rapid-prototyping emulation environment for fog computing. In Pro-

ceedings of the 2018 IEEE International Conference on Communications (Kansas
City, MO, USA) (ICC ’18). IEEE, New York, NY, USA, 1–7. https://doi.org/10.1109/
ICC.2018.8423003

[10] Jonathan Hasenburg, Martin Grambow, and David Bermbach. 2021. MockFog
2.0: Automated Execution of Fog Application Experiments in the Cloud. IEEE
Transactions on Cloud Computing 11, 1 (April 2021), 58–70. https://doi.org/10.
1109/TCC.2021.3074988

[11] Jonathan Hasenburg, Martin Grambow, Elias Grünewald, Sascha Huk, and David
Bermbach. 2019. MockFog: Emulating Fog Computing Infrastructure in the
Cloud. In Proceedings of the First IEEE International Conference on Fog Computing

2019 (Prague, Czech Republic) (ICFC 2019). IEEE, New York, NY, USA, 144–152.
https://doi.org/10.1109/ICFC.2019.00026

[12] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran Venkatara-
mani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016. Serverless
Computation with OpenLambda. In Proceedings of the 8th USENIX Workshop

on Hot Topics in Cloud Computing (Denver, CO, USA) (HotCloud ’16). USENIX
Association, Berkeley, CA, USA.

[13] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yad-
wadkar, et al. 2019. Cloud Programming Simplified: A Berkeley View on Serverless

Computing. Technical Report 20193. EECS Department, University of California,
Berkeley, Berkeley, CA, USA. https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2019/EECS-2019-3.html

[14] Simon Kassing, DebopamBhattacherjee, André Baptista Águas, Jens Eirik Saethre,
and Ankit Singla. 2020. Exploring the “Internet from Space” with Hypatia. In
Proceedings of the ACM Internet Measurement Conference (Virtual Event, USA)
(IMC ’20). Association for Computing Machinery, New York, NY, USA, 214–229.
https://doi.org/10.1145/3419394.3423635

[15] Benjamin Kempton and Anton Riedl. 2021. Network Simulator for Large Low
Earth Orbit Satellite Networks. In Proceedings of the 2021 IEEE International

Conference on Communications (Montreal, QC, Canada) (ICC). IEEE, New York,
NY, USA, 1–6. https://doi.org/10.1109/ICC42927.2021.9500439

[16] Junfeng Li, Sameer G. Kulkarni, K. K. Ramakrishnan, and Dan Li. 2019. Under-
standing open source serverless platforms: Design considerations and perfor-
mance. In Proceedings of the 5th International Workshop on Serverless Computing

(Davis, CA, USA) (WoSC ’19). Association for Computing Machinery, New York,
NY, USA, 37–42. https://doi.org/10.1145/3366623.3368139

[17] Ruben Mayer, Leon Graser, Harshit Gupta, Enrique Saurez, and Umakishore
Ramachandran. 2017. Emufog: Extensible and scalable emulation of large-scale
fog computing infrastructures. In Proceedings of the 2017 IEEE Fog World Congress

(Santa Clara, CA, USA) (FWC ’17). IEEE, New York, NY, USA, 1–6. https://doi.
org/10.1109/FWC.2017.8368525

[18] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. 2020. Pruning Edge Research with Latency Shears.
In Proceedings of the 19th ACM Workshop Hot Topics in Networks (Virtual Event,
USA) (HotNets ’20). Association for Computing Machinery, New York, NY, USA,
182–189. https://doi.org/10.1145/3422604.3425943

[19] Tobias Pfandzelter and David Bermbach. 2019. IoT Data Processing in the Fog:
Functions, Streams, or Batch Processing?. In Proceedings of the 1st Workshop on

Efficient Data Movement in Fog Computing (Prague, Czech Republic) (DaMove

2019). IEEE, New York, NY, USA, 201–206. https://doi.org/10.1109/ICFC.2019.
00033

[20] Tobias Pfandzelter and David Bermbach. 2020. tinyFaaS: A Lightweight FaaS
Platform for Edge Environments. In Proceedings of the Second IEEE International

Conference on Fog Computing (Sydney, NSW, Australia) (ICFC 2020). IEEE, New
York, NY, USA, 17–24. https://doi.org/10.1109/ICFC49376.2020.00011

[21] Tobias Pfandzelter and David Bermbach. 2021. Edge (of the Earth) Replication:
Optimizing Content Delivery in Large LEO Satellite Communication Networks.
In Proceedings of the 21st IEEE/ACM International Symposium on Cluster, Cloud

and Internet Computing (Melbourne, Australia) (CCGrid ’21). IEEE, New York, NY,
USA, 565–575. https://doi.org/10.1109/CCGrid51090.2021.00066

[22] Tobias Pfandzelter and David Bermbach. 2022. Celestial: Virtual Software System
Testbeds for the LEO Edge. In Proceedings of the 23rd ACM/IFIP International

Middleware Conference (Quebec, QC, Canada) (Middleware ’22). Association for
Computing Machinery, New York, NY, USA, 69–81. https://doi.org/10.1145/
3528535.3531517

[23] Tobias Pfandzelter and David Bermbach. 2022. QoS-Aware Resource Placement
for LEO Satellite Edge Computing. In Proceedings of the 6th IEEE International

Conference on Fog and Edge Computing (Taormina, Italy) (ICFEC ’22). IEEE, New
York, NY, USA, 66–72. https://doi.org/10.1109/ICFEC54809.2022.00016

[24] Tobias Pfandzelter and David Bermbach. 2022. Testing LEO Edge Software Systems

with Celestial. Technical Report 20221. TU Berlin & ECDF, Mobile Cloud
Computing Research Group, Berlin, Germany.

[25] Tobias Pfandzelter and David Bermbach. 2023. Can Orbital Servers Provide
Mars-Wide Edge Computing?. In Proceedings of the 1st ACM MobiCom Workshop

on Satellite Networking and Computing (Madrid, Spain) (SatCom ’23). Association
for Computing Machinery, New York, NY, USA, 7–12. https://doi.org/10.1145/
3570361.3614239

[26] Tobias Pfandzelter and David Bermbach. 2023. Edge Computing in Low-Earth
Orbit – What Could Possibly Go Wrong?. In Proceedings of the the 1st ACM

Workshop on LEO Networking and Communication 2023 (Madrid, Spain) (LEO-
NET ’23). Association for Computing Machinery, New York, NY, USA, 19–24.
https://doi.org/10.1145/3614204.3616106

[27] Tobias Pfandzelter and David Bermbach. 2023. Enoki: Stateful Distributed FaaS
from Edge to Cloud. (Sept. 2023). arXiv:2309.03584

[28] Tobias Pfandzelter and David Bermbach. 2023. Evaluating LEO Edge Software in
the Cloud with Celestial. In Proceedings of the 11th IEEE International Conference

on Cloud Engineering (Boston, MA, USA) (IC2E ’23). IEEE, New York, NY, USA,
224–225. https://doi.org/10.1109/IC2E59103.2023.00034

[29] Tobias Pfandzelter and David Bermbach. 2023. Towards a Benchmark for Fog
Data Processing. In Proceedings of the 11th IEEE International Conference on Cloud

Engineering (Boston, MA, USA) (IC2E ’23). IEEE, New York, NY, USA, 92–98.
https://doi.org/10.1109/IC2E59103.2023.00018

[30] Tobias Pfandzelter, Jonathan Hasenburg, and David Bermbach. 2021. Towards
a Computing Platform for the LEO Edge. In Proceedings of the 4th International

Workshop on Edge Systems, Analytics and Networking (Online, United Kingdom)
(EdgeSys ’21). Association for Computing Machinery, New York, NY, USA, 43–48.
https://doi.org/10.1145/3434770.3459736

[31] Tobias Pfandzelter, Sören Henning, Trever Schirmer, Wilhelm Hasselbring, and
David Bermbach. 2022. Streaming vs. Functions: A Cost Perspective on Cloud
Event Processing. In Proceedings of the 10th IEEE International Conference on

Cloud Engineering (Asilomar, CA, USA) (IC2E 2022). IEEE, New York, NY, USA,
67–78. https://doi.org/10.1109/IC2E55432.2022.00015

[32] Tobias Pfandzelter, Nils Japke, Trever Schirmer, Jonathan Hasenburg, and David
Bermbach. 2023. Managing Data Replication and Distribution in the Fog with
FReD. Software: Practice and Experience 53, 10 (Oct. 2023), 1958–1981. https:
//doi.org/10.1002/spe.3237

[33] Tobias Pfandzelter, Trever Schirmer, and David Bermbach. 2022. Towards Dis-
tributed Coordination for Fog Platforms. In Proceedings of the 22nd IEEE/ACM

International Symposium on Cluster, Cloud and Internet Computing, Posters

(Taormina, Italy) (CCGrid 2021). IEEE, New York, NY, USA, 760–762. https:
//doi.org/10.1109/CCGrid54584.2022.00087

[34] Imadur Rahman, Sara Modarres Razavi, Olof Liberg, Christian Hoymann, Hen-
ning Wiemann, Claes Tidestav, Paul Schliwa-Bertling, Patrik Persson, and Dirk
Gerstenberger. 2021. 5G evolution toward 5G advanced: An overview of 3GPP
releases 17 and 18. Ericsson Technology Review 2021, 14 (Oct. 2021), 2–12.
https://doi.org/10.23919/ETR.2021.9904665

[35] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. A com-

prehensive study of Convergent and Commutative Replicated Data Types. Technical
Report 7506. Institut National de Recherche en Informatique et en Automatique
(INRIA), Paris, France. https://hal.inria.fr/inria-00555588

[36] Weisong Shi and Schahram Dustdar. 2016. The Promise of Edge Computing.
Computer 49, 5 (May 2016), 78–81. https://doi.org/10.1109/MC.2016.145

[37] Marten van Steen and Andrew S. Tanenbaum. 2023. Distributed Systems. Marten
van Steen, Enschede, The Netherlands.

[38] ShangguangWang, Qing Li, Mengwei Xu, Xiao Ma, Ao Zhou, and Qibo Sun. 2021.
Tiansuan Constellation: An Open Research Platform. In Proceedings of the 2021

IEEE International Conference on Edge Computing (Chicago, IL, USA) (EDGE). IEEE,
New York, NY, USA, 94–101. https://doi.org/10.1109/EDGE53862.2021.00022

https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1145/3286062.3286079
https://doi.org/10.1145/3422604.3425937
https://doi.org/10.1145/3422604.3425937
https://doi.org/10.1145/3359989.3365407
https://doi.org/10.1145/3359989.3365407
https://tldp.org/HOWTO/pdf/Traffic-Control-HOWTO.pdf
https://tldp.org/HOWTO/pdf/Traffic-Control-HOWTO.pdf
https://doi.org/10.1109/ICC.2018.8423003
https://doi.org/10.1109/ICC.2018.8423003
https://doi.org/10.1109/TCC.2021.3074988
https://doi.org/10.1109/TCC.2021.3074988
https://doi.org/10.1109/ICFC.2019.00026
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://doi.org/10.1145/3419394.3423635
https://doi.org/10.1109/ICC42927.2021.9500439
https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1109/FWC.2017.8368525
https://doi.org/10.1109/FWC.2017.8368525
https://doi.org/10.1145/3422604.3425943
https://doi.org/10.1109/ICFC.2019.00033
https://doi.org/10.1109/ICFC.2019.00033
https://doi.org/10.1109/ICFC49376.2020.00011
https://doi.org/10.1109/CCGrid51090.2021.00066
https://doi.org/10.1145/3528535.3531517
https://doi.org/10.1145/3528535.3531517
https://doi.org/10.1109/ICFEC54809.2022.00016
https://doi.org/10.1145/3570361.3614239
https://doi.org/10.1145/3570361.3614239
https://doi.org/10.1145/3614204.3616106
https://arxiv.org/abs/2309.03584
https://doi.org/10.1109/IC2E59103.2023.00034
https://doi.org/10.1109/IC2E59103.2023.00018
https://doi.org/10.1145/3434770.3459736
https://doi.org/10.1109/IC2E55432.2022.00015
https://doi.org/10.1002/spe.3237
https://doi.org/10.1002/spe.3237
https://doi.org/10.1109/CCGrid54584.2022.00087
https://doi.org/10.1109/CCGrid54584.2022.00087
https://doi.org/10.23919/ETR.2021.9904665
https://hal.inria.fr/inria-00555588
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1109/EDGE53862.2021.00022

	Abstract
	1 Introduction
	2 LEO Edge Testbed
	3 Geo-Distributed Data Store
	4 Serverless Edge Compute Platform
	5 LEO Edge Applications
	6 Conclusion
	Acknowledgments
	References

