
Kernel-as-a-Service: A Serverless Programming Model for
Heterogeneous Hardware Accelerators

Tobias Pfandzelter
tp@mcc.tu-berlin.de
TU Berlin & ECDF
Berlin, Germany

Aditya Dhakal
aditya.dhakal@hpe.com
Hewlett Packard Labs

Milpitas, CA, United States

Eitan Frachtenberg
eitan.frachtenberg@hpe.com

Hewlett Packard Labs
Milpitas, CA, United States

Sai Rahul Chalamalasetti
sairahul.chalamalasetti@hpe.com

Hewlett Packard Labs
Milpitas, CA, United States

Darel Emmot
darel.emmot@hpe.com
Hewlett Packard Labs

Milpitas, CA, United States

Ninad Hogade
ninad.hogade@hpe.com
Hewlett Packard Labs

Fort Collins, CO, United States

Rolando Pablo Hong Enriquez
rhong@hpe.com

Hewlett Packard Labs
London, United Kingdom

Gourav Rattihalli
gourav.rattihalli@hpe.com
Hewlett Packard Labs

Milpitas, CA, United States

David Bermbach
db@mcc.tu-berlin.de
TU Berlin & ECDF
Berlin, Germany

Dejan Milojicic
dejan.milojicic@hpe.com
Hewlett Packard Labs

Milpitas, CA, United States

ABSTRACT
With the slowing of Moore’s law and decline of Dennard scaling,
computing systems increasingly rely on specialized hardware ac-
celerators in addition to general-purpose compute units. Increased
hardware heterogeneity necessitates disaggregating applications
into workflows of fine-grained tasks that run on a diverse set of
CPUs and accelerators. Current accelerator delivery models cannot
support such applications efficiently, as (1) the overhead of manag-
ing accelerators erases performance benefits for fine-grained tasks;
(2) exclusive accelerator use per task leads to underutilization; and
(3) specialization increases complexity for developers.

We propose adopting concepts from Function-as-a-Service (FaaS),
which has solved these challenges for general-purpose CPUs in
cloud computing. Kernel-as-a-Service (KaaS) is a novel serverless
programming model for generic compute accelerators that aids
heterogeneous workflows by combining the ease-of-use of higher-
level abstractions with the performance of low-level hand-tuned
code. We evaluate KaaS with a focus on the breadth of the idea and
its generality to diverse architectures rather than on an in-depth
implementation for a single accelerator. Using proof-of-concept
prototypes, we show that this programming model provides per-
formance, performance efficiency, and ease-of-use benefits across
a diverse range of compute accelerators. Despite increased levels
of abstraction, when compared to a naive accelerator implementa-
tion, KaaS reduces completion times for fine-grained tasks by up

Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 24th International
Middleware Conference (Middleware ’23), December 11–15, 2023, Bologna, Italy, https:
//doi.org/10.1145/3590140.3629115.

to 96.0% (GPU), 68.4% (FPGA), 98.6% (TPU), and 34.9% (QPU) in our
experiments.

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid)
systems; Cloud computing; • Software and its engineering →
Cloud computing.

KEYWORDS
Serverless, Accelerators, Heterogeneity

ACM Reference Format:
Tobias Pfandzelter, Aditya Dhakal, Eitan Frachtenberg, Sai Rahul Chala-
malasetti, Darel Emmot, Ninad Hogade, Rolando Pablo Hong Enriquez,
Gourav Rattihalli, David Bermbach, and Dejan Milojicic. 2023. Kernel-as-
a-Service: A Serverless Programming Model for Heterogeneous Hardware
Accelerators. In 24th International Middleware Conference (Middleware ’23),
December 11–15, 2023, Bologna, Italy. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3590140.3629115

1 INTRODUCTION
Modern computing tasks increasingly require integrating elements
from data analytics and machine learning (ML) [21, 22]. Combined
with the decline of Moore’s law this leads to increased hardware
heterogeneity in compute clusters and the cloud with the adop-
tion of accelerators such as graphics processing units (GPUs), or
field-programmable gate arrays (FPGAs) to meet the increasing
performance demands of applications while adhering to power
constraints [20]. Additionally, the introduction of unconventional
accelerators such as quantum processing units (QPUs) or wafer-
scale engines [84], and increasingly federated and distributed clus-
ter deployments [52], lead to the disaggregation of applications

https://orcid.org/0000-0002-7868-8613
https://orcid.org/0000-0002-8297-8525
https://orcid.org/0000-0002-3709-1829
https://orcid.org/0000-0001-9004-440X
https://orcid.org/0009-0008-0799-4788
https://orcid.org/0000-0001-8560-2497
https://orcid.org/0009-0008-5652-4408
https://orcid.org/0000-0002-0373-1867
https://orcid.org/0000-0002-7524-3256
https://orcid.org/0000-0001-9830-8588
https://doi.org/10.1145/3590140.3629115
https://doi.org/10.1145/3590140.3629115
https://doi.org/10.1145/3590140.3629115


Middleware ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter et al.

Image 
Preprocessing

Grayscale 
Conversion & 

Sampling
ML Inference

Figure 1: Workflow example with three tasks: image prepro-
cessing, bitmap conversion, and ML inference on the image
raster. These tasks run most efficiently on heterogeneous
hardware: preprocessing on CPUs, bitmap conversion on FP-
GAs, and inference on GPUs.

into workflows of smaller, more fine-grained tasks that can be
dynamically composed and deployed on heterogeneous infrastruc-
ture [96]. This heterogeneous landscape limits the usability of
special-purpose frameworks and creates opportunity and demand
for a high-performance programming paradigm that incorporates
any accelerator equally well. The predominant accelerator deploy-
ment paradigm carves out tasks that can benefit from hardware
accelerations, namely, the kernels1, and requires the developer to
tailor them to a specific accelerator interface. This approach limits
our ability to decompose and recompose workflows into constituent
computational tasks that map independently to hardware, because
these tasks maintain the control of computational resources in the
individual application level, not the system’s complete view of ac-
celerator demand. We argue this model is inadequate for broad
adoption for heterogeneous workflows and architectures, leading
to pessimal resource allocation, poor abstraction choices, and gra-
tuitous overhead.

Furthermore, buying or renting (e.g., as part of a cloud VM) a
complete compute accelerator leads to expensive underutilization of
hardware for small tasks on increasingly capable accelerators [98].
Newly introduced space-sharing models, e.g., Multi-Process Service
(MPS) for Nvidia GPUs [27, 58] or Coyote for FPGAs [44], emu-
late the abstraction of processes on hardware accelerators, yet still
impose a per-process runtime initialization overhead, such as the
GPU context creation. This overhead is prohibitive for fine-grained,
short-lived tasks, as demonstrated in our motivating example work-
flow in Fig. 1. It combines small tasks of image processing that are
best run on diverse hardware: preprocessing on a general-purpose
CPU, bitmap conversion on an FPGA, and deep-learning infer-
ence on a GPU. The results in Fig. 2 show 24.1% (FPGA) and 98.3%
(GPU) initialization overheads that lead to overall worse perfor-
mance when using accelerators over a CPU-only implementation.
While optimized implementations of this workflow can reduce this
performance overhead, they require expensive tuning, increase
complexity, and multiply development costs.

In this paper, we propose translating the benefits of the Function-
as-a-Service (FaaS) programming model to the domain of hetero-
geneous hardware accelerators. The FaaS model has demonstrated
that increased sharing of resources between applications can in-
crease resource efficiency of running workflows while decreasing
management complexity [19, 32]. Although approaches to inte-
grating specific accelerators with FaaS platforms exist [53, 70], we
ask the opposite question: how can the abstraction of FaaS benefit

1By kernel, we specifically mean a core part of the computation that executes on the
accelerator and not, e.g., an operating system kernel.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Task Completion Time (s)

Accelerator

CPU-only

FPGA Init

Prep. Mem.

Data Copy

Kernel Run

App. Init
GPU Init

CUDA Memcpy.
CUDA Free

CUDA Stream Create
Kernel Launch

Kernel Time

Other CUDA

Preprocess Bitmap Inference

Figure 2: Completion time of tasks in Fig. 1 on two 10-core
Intel® Xeon® E5-2650 v3 CPUs (2.30GHz), 1.5TB memory,
Xilinx® Alveo™ U250 FPGA with 32GB memory, and Nvidia
A100 80GB GPU. Comparing a CPU-only implementation
with normal use of accelerators, the overhead of executing
small tasks makes hardware acceleration infeasible: Copying
data and running the kernel accounts for only 75.9% (FPGA)
and 1.7% (GPU) task completion time, with the majority of
the overhead attributed to accelerator initialization.

hardware accelerators to support workflows in federated heteroge-
neous computing? To answer this question, we make the following
contributions in this paper:

• We introduce the Kernel-as-a-Service (KaaS) serverless pro-
gramming model, transferring the ideas and benefits of FaaS
to hardware accelerators (§3).

• We present a proof-of-concept implementation of KaaS for
GPUs, FPGAs, TPUs, and QPUs (§4).

• Using this prototype, we evaluate the KaaS concept for per-
formance, elasticity, and scalability and demonstrate it on a
heterogeneous range of accelerators (§5).

• We critically discuss the implications and limitations of this
approach, and suggest further research directions in this area
(§6).

2 BACKGROUND
Compute Acceleration and Kernels. The well-known slowing of
Moore’s law brings about a technological shift in cloud and high-
performance computer architectures [20]. Although CPUs still
show modest annual gains in performance, the most significant
performance-per-Watt improvements are now obtained using het-
erogeneous architectures, via special-purpose compute accelera-
tors [77]. These accelerators take many forms, primarily as special-
ized architectures optimized for a subset of computations. Today,
the most common of these architectures are general-purpose GPUs,
but other types of accelerators are on the rise, especially for ML
workloads. Examples include Tensor Processing Units (TPUs), Data
Processing Units (DPUs), Quantum Processing Units (QPUs), and
FPGAs. Instead of offering the all-around excellent programmabil-
ity and performance for general workloads of CPUs, they all offer
significantly better performance-per-Watt for specific workloads
only, which often require expert programming and tuning [94].

Concomitantly with the hardware evolution, we also witness an
evolution in software. To benefit from heterogeneous architectures,
programmers replace monolithic programs with a hybrid model,
where some logic runs on the host CPU and some on accelerators.



Kernel-as-a-Service: A Serverless Programming Model for Heterogeneous Hardware Accelerators Middleware ’23, December 11–15, 2023, Bologna, Italy

This accelerated code is often represented as kernels, a fundamental
algorithm that has been ported to run efficiently on the acceler-
ator [43]. Matrix multiplication, e.g., is a well-known kernel that
maps efficiently to GPUs and is commonly used in deep-learning
libraries.

This programming model, however, still carries limitations such
as difficulty to program, overhead, and poor scalability. To address
some of these limitations, we propose a further evolution of this
programming model. The key idea of this paper is to encapsulate
kernels—analogous to the evolution seen in CPUs with the FaaS
model—and to apply the encapsulation to a broad set of architec-
tures.

Function-as-a-Service. FaaS is a “serverless” delivery model for
general-purpose cloud compute resources [75] that is the latest evo-
lution of infrastructure sharing among cloud applications: where
virtual machines have abstracted physical servers and containers
have abstracted from the notion of exclusive compute nodes, FaaS
platforms abstract away the entire backend runtime by providing
standardized environments shared across applications [32]. In FaaS,
developers provide only function code that is transparently exe-
cuted by the service provider in response to external events or
invocations. This model abstracts resource management, e.g., invo-
cation routing and resource (de-)allocation, reducing application
footprints and decreasing development and operational costs [51].
It also fosters the specialization of teams for individual services
and tasks in a workflow, increasing agility and developer productiv-
ity [12, 55]. The vertical integration of infrastructure and platform
increases resource efficiency for providers through more efficient
bin-packing [30, 63].

FaaS functions are short-lived and stateless, which leads to a
theoretically unlimited horizontal scalability, as functions are not
hindered by synchronization [85]. Combined with short creation
times, a FaaS system can achieve high elasticity by scaling out as
the number of invocations increase and releasing resources once
invocations end [45]. Further, the burden of securing and isolat-
ing services is shifted to the FaaS platform provider. As function
invocations must pass through the platform, additional security
measures such as access control can be implemented and updated
outside the actual application, separating concerns [56].

3 KERNEL-AS-A-SERVICE DESIGN
We propose KaaS, a serverless programming model for hardware
accelerators based on FaaS.

3.1 Overview
In KaaS, applications register kernels that implement a task for
a shared pool of accelerators. Applications can then invoke that
kernel through a shim, optionally providing input arguments and
receiving output data from the kernel, as shown in Fig. 3. Thus, an
entire workflow can be disaggregated into constituent kernels, e.g.,
in our motivating example (Fig. 1), one kernel can handle image
preprocessing on CPU cores for all users, another kernel converts
all images to bitmaps on FPGAs, and a third classifies images on
GPUs. Each kernel is assigned to a computing resource based on
its needs and on availability. Applications are written as a collec-
tion of portable and device-agnostic kernels, as opposed to mixed

Input/Output Data K
aa
S
Se
rv
er

Developer

Register
Kernel Code

CPU Accelerator
KaaS Host

Kernel

W
ra
pp
er

Wrap &
Deploy

…Invoke Kernel3

1 2

4

Figure 3: KaaS follows the FaaS programming model but ex-
tends it to heterogeneous hardware accelerators: 1 Develop-
ers register accelerator kernel code on theKaaS host. 2 KaaS
then wraps this kernel code to expose it as a KaaS kernel,
deploying it and other kernels on the host. 3 Applications
invoke kernels over the network in a request/response pat-
tern. 4 The KaaS server directs those invocations to copies
of the kernel on the accelerator.

and hand-tuned code. These kernels can persist in memory (as
FaaS containers do), and handle their workloads through function
invocations, with minimal initialization overhead and optimized
communication pipelining. Conceivably, each kernel can also man-
age the accelerator on its own, including resource management,
obviating the need for the user or the OS to coordinate multiple
resources. Resource-management considerations such as fairness,
data isolation, scheduling, and service-level agreements can thus
vary across devices and deployments. Note that this large explo-
ration space is an active research area and outside the scope of
this paper; our main goals in this experimental evaluation are to
demonstrate the potential benefits from overhead elimination and
to prove the feasibility of the KaaS concept. That said, this disaggre-
gated model of resource management opens the door to even higher
efficiencies with fine-grained scheduling, with the applications and
OS remaining agnostic of the sharing.

The KaaS approach is analogous to how functions in FaaS plat-
forms are first registered and then invoked dynamically. Today,
without explicit sharing support (Fig. 4a), applications either use
the accelerator for its entire lifetime or “rent” it for a specified
amount of time before a new application can use it, e.g., using
cloud VMs. Existing space-sharing paradigms, e.g., MPS on GPUs
or Coyote on FPGAs, split accelerators by allocating fixed device
portions for different processes (Fig. 4b). With KaaS, we propose
increasing the level of sharing to also share the runtime across
different kernels (Fig. 4c). The platform delegates the control of an
accelerator to the KaaS runtime that uses it for a single application
kernel. The runtime can be written by the platform provider or
application developer, and looks like any other library call from
the application’s point of view. In fact, some user-level code can be
simplified as it no longer needs to manage hardware resources at a
low or non-portable level, as those tasks are delegated to the opti-
mized runtime. Once assigned to an accelerator, the KaaS runtime
alone controls allocation of the device resources, much like an OS
manages all devices on a server, including scheduling, security, and
interfaces.



Middleware ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter et al.

Task A Task B

Runtime Runtime

App A

App B

(a) Sharing in Time

Task B
Runtime

Task A
Runtime

App A

App B

(b) Sharing in Space

Task A

Task B

Runtime

App B

App A

Shim

(c) Shared Runtimes (KaaS)

Figure 4: Increasing levels of sharing: In time sharing, tasks run exclusively on the accelerator, each providing their own
runtime (Fig. 4a). With space-sharing, using approaches such as MPS, multiple processes can run on the device in parallel,
although potentially slowing down each individual task (Fig. 4b). With KaaS, multiple tasks are launched into a shared runtime
through a shim, reducing the management overhead of individual runtimes and abstracting from the device (Fig. 4c).

3.2 Performance
Although an additional layer of virtualization cannot improve on
the optimal performance of a compute accelerator, abstractions
can help developers write more efficient implementations of their
services. This is especially important in heterogeneous computing,
where managing the complexity of novel compute architectures is
a major challenge inhibiting broad adoption of accelerators [25].
Although libraries such as TensorFlow for ML [1] or tools such
as PyLog [35] already provide an abstraction for programming
accelerators, integrating these tools into larger workflows is still
challenging. As our motivating example in §1 shows, initialization
overheads from tools, libraries, and accelerator runtimes negate
the theoretical benefits of accelerating compute tasks, especially as
task granularity grows finer.

A key benefit of abstracting the runtime management of acceler-
ator tasks in KaaS is moving this overhead out of the critical path
of workflows. In FaaS, the first function invocation causes a cold
start, where libraries and runtime are initialized at the cost of addi-
tional latency [85]. The majority of requests can then be served by
a warm copy of the function instance at near-native latency, as run-
time and libraries are already initialized. Similarly, an initial KaaS
kernel invocation might be cold, incurring the discussed initializa-
tion overheads, but subsequent invocations benefit from running
in existing runtimes. Crucially, this performance improvement is
achieved without additional tuning by developers.

3.3 Efficiency
In addition to the performance benefits for a specific kernel or appli-
cation, KaaS can provide efficiency gains for the system as a whole.
First, a fine-grained hardware sharing model allows providers to
serve multiple kernel invocations from the same device. The fine-
grained resource allocation of kernel instances in both space (num-
ber and footprint of instances) and in time (how long an instance
is active) means that only resources that are in use are actually de-
ployed, and few compute resources are idle, requiring less hardware
overall [13, 63, 68]. Second, this resource sharing model could lead
to a fine-grained pay-per-use model similar to FaaS, lowering the
barrier to entry for applications running on hardware accelerators,
compared to overprovisioned cloud machines that incur costs for
a full accelerator device. Third, as KaaS kernels are transparently

invoked over the network, even across nodes and devices, appli-
cations benefit from improved elasticity and horizontal scalability.
A larger number of concurrent kernel invocations can be served
by a proportionally larger number of kernel instances. If a device
cannot serve the concurrent kernel requests, additional device can
be added to serve these requests. A workflow executed in response
to incoming data, e.g., scientific images, can process each data item
independently and scale with the rate of incoming data, similarly
to FaaS workflows [41].

3.4 Usability
In KaaS, we map the concept of workflows to the composition of
heterogeneous kernels and traditional software. Abstracted kernels
can be dynamically recombined or updated for new hardware. Com-
bined with transparent execution, this yields a flexible deployment
method for distributed and heterogeneous infrastructure.

The potential reusability improvements are more pronounced
in KaaS than in FaaS: Hardware accelerators can be difficult to
program, especially with diverging best practices, interfaces, and
performance optimizations for different types, makes, or even gen-
erations of accelerators [25]. With KaaS, componentization and
composability create a separation of concerns: Each standalone
kernel can be implemented and optimized for its target hardware
independently of the rest of the application or workflow. The under-
lying target hardware may also be upgraded without changing the
entire application. This abstraction also allows for transparent poly-
glot software, e.g., a C-based FPGA kernel and a Python-based GPU
kernel integrated in a workflow. Further, library kernels similar to
optimized implementations found in numba [46] or PyLog [35] can
be integrated easily. From disaggregation also follows simplified
dependency management, as each task of a workflow requires only
the specific dependencies for its own target accelerator.

4 PROTOTYPE IMPLEMENTATION
The proposed approach is a model for execution, and we do not
prescribe a specific implementation. That said, we develop a set
of minimal prototypes to evaluate its feasibility across a range of
hardware accelerators. Please note that our prototypes serve only
as a proof-of-concept, and we have decided against integrating
them in any of the available open-source FaaS platforms, which



Kernel-as-a-Service: A Serverless Programming Model for Heterogeneous Hardware Accelerators Middleware ’23, December 11–15, 2023, Bologna, Italy

K
aa

S
Se

rv
er

shared memory

Client
Req In-band data

Out-of-band data

TCP

K
er

ne
l A

K
er

ne
l B

Data

Data

Data

GPU Processors

GPU Memory

KaaS Host

Figure 5: Our GPU prototype runs a KaaS server alongside
an Nvidia GPU. Using Nvidia MPS, the server can launch con-
current instances of registered kernels on the GPU. Clients
access these kernels through a request over TCP, transferring
data in-band (serialized) or out-of-band (e.g., using shared
memory within a host). Data is copied to GPUmemory using
the CUDA interface. Kernels are registered as Python func-
tions and called transparently to the KaaS server.

incur high overheads in workflow management [7, 67, 74, 78] that
would obscure performance measurements of our runtime.

4.1 Components
As shown in Fig. 5 for the GPU implementation, there are three
main components to the KaaS architecture: the KaaS server, task
runners on the accelerator, and a client API.

KaaS Server. The KaaS server is a Python service running on the
CPU of a host equipped with accelerators. It exposes configuration
and invocation endpoints andmanages task runners on accelerators.
When a kernel is invoked, the KaaS server starts a new runner to
execute it (cold start) or uses an existing runner with sufficient
resources (warm start).

Task Runner. The task runners are Python-based host processes
combining developer-provided kernel code with a wrapper that
exposes a TCP server. Using this endpoint, kernel invocations are
sent from KaaS server to task runner, where the provided code is
executed once and results are returned. Task runners can share an
accelerator using the abstractions provided by its API, such as MPS
on Nvidia GPUs.

Client API. Similarly to the connection between KaaS server and
task runners, the client API is also exposed over TCP. Clients send
their kernel invocations using this endpoint, but with the KaaS
abstraction, clients need not be aware of which specific hardware
executes their invocation. As in FaaS, clients can use the TCP-
based invocation to send data directly to kernels using in-band
data transfer (faster for small data) or send only pointers to data
using out-of-band data transfer. This allows transferring larger data
without copying over the network. For our initial KaaS prototype,
which focuses on single-node hosts, a shared memory region may
be defined by the client, which can then be accessed by the task
runner by providing a pointer to that region.

Despite our initial focus on single-node deployments, the loose,
TCP-based coupling between client, KaaS server, and accelerator

host means that a distributed deployment is also feasible. Instead
of shared host memory, RDMA may be used for out-of-band data
transfer here (§6).

4.2 Accelerators
While the basic architecture of KaaS is fixed, we must adapt the task
runner implementation for each accelerator API. Specifically, we
develop prototypes for accelerator versions we expect to encounter
in datacenters, such as GPUs, FPGAs, TPUs, and QPUs.

GPU. This prototype supports Nvidia GPU kernels written in Py-
thon using numba [46] for the CUDA interface. Our task runners
share the GPU using Nvidia MPS, allowing multiple runners to
launch kernel invocations in parallel.

FPGA. Our FPGA prototype uses a backend based on the PyLog [35]
Python-based FPGA programming and synthesis library. Incoming
requests are fed to the Xilinx FPGA kernel through its PYNQ in-
terface [4]. PyLog does not currently allow for spatial sharing of
FPGAs, but an extension with systems such as Coyote, which divide
FPGAs into isolated regions that can be individually configured, is
possible [44].

TPU. Each Google Cloud tensor processing unit (TPU) board con-
tains multiple dual-core TPU chips, which can be controlled indi-
vidually [42]. Running multiple processes on the same TPU chip,
however, leads to errors. Our KaaS prototype for TPUs thus allo-
cates one task runner per TPU chip and distributes requests across
these chips evenly.

QPU. Quantum compute units (QPU) are still in their infancy, and it
is unclear if they can ever be widely deployed [82]. Nevertheless, it
is useful to explore how these QPUs may be integrated into future
compute architectures and software stacks. We build our KaaS
prototype with support for the IBM Qiskit runtime [37, 91] in order
to deploy quantum programs on both simulators and existing real
quantum computers. This interface, however, does not allow fine-
grained control over hybrid applications that combine traditional
and quantum computations.

5 EVALUATION
We use our prototype implementations to evaluate six aspects of
KaaS on diverse hardware accelerators. We explore the general
performance of kernels in KaaS (§5.1), evaluate possible energy
efficiency gains (§5.2), test the possibility of transparent, remote
invocations (§5.3), investigate scalability (§5.4), measure autoscaling
capabilities (§5.5), and benchmark kernels withKaaS onGPU, FPGA,
TPU, and (simulated and real) QPUs (§5.6). Unless otherwise noted,
our experiments use the GPU prototype of KaaS on a server with
two 20-core Intel® Xeon® E5-2698 v4 CPUs (2.20GHz), 1TB of
memory, and four Nvidia Tesla P100 PCIe GPUs with 56 streaming
multiprocessors and 16GB of memory each.

We measure the total task completion time and the kernel time,
i.e., time spent just on data copy and computation. Total task com-
pletion time further includes launching the client Python program,
or generating the input data where applicable. For each metric, our
plots show the mean and 95% confidence interval for ten samples
of each measurement.



Middleware ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter et al.

1 4 7 10 13 16 19
Iteration

0

1

2

3

4

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

)

Cold Start

Warm Start

Exclusive
KaaS

(a) Small task size (matrix
dimensions 500 × 500)

1 4 7 10 13 16 19
Iteration

0

2

4

6

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

) Cold Start

Warm Start Exclusive
KaaS

(b) Large task size (matrix
dimensions 10,000 × 10,000)

Figure 6: The task completion time remains unchanged for
small (Fig. 6a) and large (Fig. 6b) tasks across 20 iterations in
exclusive GPU use. Using KaaS incurs a “cold start” for the
first invocation, yet subsequent invocations benefit from an
existing warm copy. This decreases invocation overhead by
94.1% and 46.4% for small and large tasks, respectively.

5.1 Performance
To evaluate the performance impact of cached kernel copies in
KaaS, we implemented a matrix-multiplication kernel on top of
our KaaS GPU prototype using numba CUDA [46]. We control task
granularity using the matrix dimensions 𝑁 ×𝑁 that we use as input
to our kernel.

Cold & Warm Starts. We first compare completion times for a small
and large matrix multiplication task in KaaS and “exclusive” GPU
usage. In the exclusive model, the program has full access to the
GPU, without Nvidia MPS enabled. Our small task multiplies two
500×500 matrices (52 million FLOP), while the large task multiplies
two 10,000 × 10,000 matrices (402 billion FLOP), both repeated 20
times. The results in Fig. 6 show how KaaS kernels have to pay a
cold-start penalty on their first invocation that accounts for 87.1%
and 15.5% of their total task completion time for our small and large
computation. Nevertheless, even though the accelerator has to be
initialized on that first invocation, the kernel is already registered in
host memory and large dependencies such as numba are initialized,
making a KaaS cold start 54.6% and 36.9% shorter than exclusive
execution. A further factor is that our client code has no need to
import the numba dependency, as all heavy computation is offloaded
to the accelerator through KaaS. Subsequent invocations in KaaS
are 94.1% and 46.4% faster than the exclusive model for small and
large tasks. As we consider “cold” starts the outlier in frequent
invocations of kernels, we focus on “warm” performance in the
subsequent evaluation.

Warm Start Overheads. We further explore this overhead with ad-
ditional task sizes in Fig. 7. Computation is the kernel time of the
task execution, whereas Overhead is the difference between this
time and the total task completion time. We also remove the time to
generate our random input matrix, which takes between 2ms and
3,619ms, depending on the matrix dimensions. The KaaS approach
reduces general computation time by 406ms to 419ms, regardless
of task size. We expect this reduction to be caused by the additional
CUDA initialization that has to be performed for each execution in
the baseline model. For the small task of multiplying matrices of
dimension 500×500, this reduction leads to a 469× faster execution.

0 100 M 200 M 300 M 400 M
Task Granularity (Matrix Elements)

0

2

4

6

T
 (

s)

Type
Overhead
Computation

Model
Exclusive
KaaS

Figure 7: Breaking down the time spent on completing the
matrix multiplication task with different input dimensions
reveals a significant reduction in computation overhead (e.g.,
host memory allocation or importing libraries) for small
tasks using KaaS compared to exclusive GPU use. For a 500 ×
500 matrix, this overhead is reduced from 689ms to 123ms.

0 50 M 100 M 150 M 200 M 250 M 300 M
Task Granularity (Matrix Elements)

0

200

400

600

T
hr

ou
gh

pu
t

(G
FL

O
P
s/

se
c)

Time Sharing
Space Sharing
KaaS

Figure 8: For small tasks, the reduction in overhead per task
execution leads to higher accelerator throughput with KaaS
over space sharing with MPS and time sharing with exclusive
GPU access. As we increase task size, throughput for KaaS
converges with that of MPS, which our prototype is based
on. Since single instances of matrix multiplication cannot
saturate the GPU, time sharing is always inferior to paral-
lelization regarding throughput in our tests.

While the overhead reduction is significant in small tasks, e.g., from
689ms to 123ms with 500 × 500 matrices, the overhead for both
tested models are equal for the largest tested task (matrix dimen-
sions 20,000 × 20,000). Here, the KaaS model incurs overhead for
the additional data movement that is needed for kernel invocation.
These results show that the kinds of optimizations KaaS enables
are more relevant to finely-grained tasks.

Performance by Level of Sharing. Finally, we consider the through-
put and slowdown of time sharing, space sharing, and KaaS for
our kernel at different task granularities, as controlled by the in-
put dimensions. We increase request concurrency to eight, which
yields two concurrent computations per GPU installed in our sys-
tem. Time sharing is the exclusive model we used before, which
forces a concurrent execution to wait for all other computations
to finish before it starts. Additionally, we enable Nvidia MPS on
our system to facilitate space sharing, allowing multiple kernel
invocations to occur on the device at the same time.



Kernel-as-a-Service: A Serverless Programming Model for Heterogeneous Hardware Accelerators Middleware ’23, December 11–15, 2023, Bologna, Italy

0 50 M 100 M 150 M 200 M 250 M 300 M
Task Granularity (Matrix Elements)

0.5

1.0

1.5

2.0

Sl
ow

do
w

n

Time Sharing
Space Sharing
KaaS

Figure 9: Comparison of per-task kernel completion time for
eight parallel task executions with that of an isolated KaaS
execution at all given task granularities. Observe that while
KaaS can effectively multiplex the available accelerators at
small task input sizes, space and time sharing incur large
slowdowns as a result of the additional “cold start” overhead.
As expected, we again see that KaaS and MPS converge for
larger tasks sizes, where exclusive GPU use yields the best
per-task execution time for coarse granularities.

In Fig. 8 we show throughput measurements for square input
matrices ranging from 250k to 324M elements. Throughput is mea-
sured as FLOP spent onmatrix multiplication on the GPU divided by
total task completion time. In our tests, KaaS has a larger through-
put advantage for smaller task sizes. With increasing task sizes,
throughput converges to that of spatial sharing, as our prototype
is based on MPS. As the time sharing model cannot benefit from
parallelization or overlapping computation and data movement,
throughput remains inferior even for larger tasks. Note that wemea-
sure real throughput, including task execution overhead, and can
thus not achieve the theoretical maximum advertised throughput
of our GPUs.

We further show the slowdown in kernel time for each of these
experiments in Fig. 9. This slowdown compares the kernel time
with that of an isolated execution of the kernel with KaaS at a
specified input matrix dimension. While additional concurrent exe-
cutions of the kernel can increase throughput with parallelization,
the slowdown metric captures the impact of that concurrency on
the execution time of individual tasks. The time sharing model can
achieve computation without slowdown for larger tasks, as no con-
current kernel executions cause resource contention. For smaller
tasks, i.e., lower than 50M matrix elements, the lower computation
overhead in KaaS leads to faster kernel completion times than in
spatial sharing. Again, the results show that faster kernel execu-
tion in KaaS through the concept of cached kernel copies benefits
smaller tasks in particular.

5.2 Energy Efficiency
Using FLOPS/W as a metric for performance efficiency [79], we
measure the energy consumption of eight concurrent matrix multi-
plication task executions. Again, we compare KaaS with the time
and space sharing models and vary task granularity with the input
data dimensions. We additionally compare a CPU-only execution

1 M 10 M 100 M
Task Granularity (Matrix Elements)

10 M

100 M

1 G

Ef
fic

ie
nc

y
(F

LO
P
S/

W
)

Time Sharing
Space Sharing

KaaS
CPU

Figure 10: The reduced overall execution time also reflects
in increased energy efficiency of KaaS compared to time and
space sharing. We additionally compare a CPU-based im-
plementation that is more energy-efficient than GPU time
sharing for small tasks but always performsworse thanKaaS.

using the same numba implementation as in our GPU tests. Al-
though the hardware of CPU and GPU is not directly comparable,
we use this as an indication of whether accelerators are also ben-
eficial from a performance-efficiency point of view. We use the
Denki extension of Performance Co-Pilot (PCP) [28] to measure
power draw, collecting metrics using the processors’ Running Av-
erage Power Limit (RAPL) [60] at 1ms intervals and GPU power
consumption at 10ms intervals. We divide the kernel computation
FLOPS by the measured drawn energy, which includes invocation
overheads. GPU idle power consumption is not included in CPU
measurements.

The results in Fig. 10 show a convergence of performance ef-
ficiency between the GPU usage models for larger tasks, where
CPU performance lags behind at 4 GFLOPS/W compared to 0.7
GFLOPS/W for GPUs. For smaller tasks, however, performance
efficiency varies between usage models. The shorter total task com-
pletion times of KaaS lead to the best efficiency and at the extreme,
only KaaS can beat a CPU-only execution in terms of energy re-
quirements. Nevertheless, the efficiency for smaller tasks is orders
of magnitude lower than that of large tasks given the remaining
constant overheads.

5.3 Transparent Remote Invocation
As we invoke KaaS kernels over the network, we can also invoke
them across nodes, e.g., from a host without accelerators to a server
that exposes a GPU through KaaS. We evaluate this potential with
the genetic algorithm kernel (GA, detailed in §5.6.1). We connect
a client with two 32-core AMD EPYC™ 7513 CPUs (2.60Ghz) and
4TB memory to the original GPU testbed with a 1Gbps Ethernet
connection (0.15ms RTT). We compare four scenarios to evaluate
the efficiency of remote kernel invocations with task granularities
between 𝑁 = 32 and 𝑁 = 4,096. First, the client invokes the kernel
on the GPU server with serialized transfer of input and output
data (remote invocation). Second, we compare local invocations
on the GPU host with serialized data transfer to account for the
effect of using the network (local/in-band invocation). Third, we
use the original data transfer over shared memory in the local
invocation to measure the overhead of serialization (local/out-of-
band invocation). Fourth, we execute the kernel on the client CPU



Middleware ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter et al.

100 1 k
Task Granularity (N)

0

5

10

15

20

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

)

Local (in-band)
Local (out-of-band)

Remote
CPU

Figure 11: Total task completion time of the GA kernel com-
pared between (1) client executing the kernel on KaaS on an-
other host with serialized data transfer (Remote), (2) with the
host itself executing the kernel on KaaS with serialized data
transfer (Local in-band), and (3) out-of-band shared memory
transfer (Local out-of-band), and (4) with local CPU execu-
tion. Results show that despite additional network transfer
overhead, remotely calling a kernel GPU through KaaS can
perform better than local CPU execution.

to compare if offloading to a GPU-enabled KaaS server offers a
benefit over local execution.

We show the overall task completion times for these four ex-
periments at different task granularity in Fig. 11. While we cannot
observe a difference in execution time between in-band and out-of-
band data transfer, accessing KaaS over the network adds a delay
of 490ms to 832ms to the kernel invocation. Nevertheless, it is clear
that for the hardware we use, local CPU execution is inferior to
remote GPU execution of the kernel. CPU execution is five times
slower than remote kernel invocation at the largest task size we
test, although admittedly similar in run time for smaller tasks, likely
because the kernel’s time is too small (48.6%) to impact the overall
execution time.

5.4 Scalability
We evaluate strong and weak scaling of cold and warm invocations
in KaaS using a PyTorch [61] ResNet-50 [31] inference kernel on a
node with eight Nvidia Tesla V100 SXM2 GPUs with 80 streaming
multiprocessors and 32GB memory each.

Strong Scaling. We first investigate strong scaling, observing the
completion time of 8,000 batches of eight input images to the infer-
ence kernel on between one and eight GPU devices. As shown in
Fig. 12a, there is a static mean 1.22s cold start overhead. As GPUs
can be initialized in parallel, this affects task completion times in
all experiments equally. When removing this constant overhead
(“warm” start), scaling is nearly linear, with total task time decreas-
ing to an eighth with eight GPUs (8.49s compared to 70.02s).

Weak Scaling. Weak scaling is similar to scale-out in FaaS, where
more resources can be added to handle additional demand. We
measure the completion time of the inference of 𝑁 × 8,000 batches
of eight images on 𝑁 GPUs (again between one and eight). We use
a round-robin scheduler that equally distributes the input batches
to devices. The results in Fig. 12b again show near-linear scaling,
with total task completion time proportional to the number of input

1 2 3 4 5 6 7 8
Number of GPUs

0

25

50

75

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

) Cold
Warm

(a) In strong scaling, overall task size remains constant (8,000 batches
of eight images). Results show near-linear scaling with additional
GPU devices.

1 2 3 4 5 6 7 8
Number of GPUs

0

30

60

90

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

)

Cold
Warm

(b) In weak scaling, we vary task size proportionally to the number
of GPU devices (8,000 batches of eight images per GPU), distributed
by round-robin scheduling. Results show near-linear scaling.

Figure 12: Scaling the inference kernels across GPUs within a
host reveals near-linear strong (Fig. 12a) and weak (Fig. 12b)
scaling. This is a result of the small task size that can be
transparently scheduled across GPUs without communica-
tion overheads between devices.

vectors divided by the number of devices (between 74.52s for one
GPU and 76.95s for eight GPUs). Further, we again note a constant
offset of (parallelized) GPU initialization between “cold” and “warm”
starts.

5.5 Autoscaling
A basic autoscaling technique in FaaS is monitoring in-flight re-
quests and scaling the number of function handlers accordingly [48].
We adopt a similar technique in KaaS, yet we note that this serves
mainly to illustrate that task runners in KaaS can be automatically
scaled to meet elastic demand – just as in FaaS, more sophisticated
techniques are possible.

We run a matrix multiplication kernel using input matrices of
dimension 10,000 × 10,000 on KaaS on the same eight-GPU host as
in §5.4. We issue a growing number of parallel kernel invocations
to this system, increasing by one parallel client every ten seconds.
Preliminary experiments have shown that each GPU can handle
four such tasks in parallel without significant impact to total task
execution time. KaaS will monitor the number of in-flight requests
and start an additional task runner on new GPU when all existing
task runners already handle four requests. We measure task com-
pletion time, throughput, and number of task runners started by
KaaS.

The results in Fig. 13 confirm how automatically scaling task
runners to accommodate a growing request rate can dynamically
adapt resource requirements. As we increase the number of parallel
clients, new task runners are started. Interestingly, KaaS does not



Kernel-as-a-Service: A Serverless Programming Model for Heterogeneous Hardware Accelerators Middleware ’23, December 11–15, 2023, Bologna, Italy

0
20
40 Number of Clients

0
4
8 Number of Task Runners

0
400
800 GPU Utilization (%)

0 50 100 150 200 250 300
Experiment Time (s)

0
2
4

Task Completion Time (s)

Figure 13: Scaling KaaS resources across eight GPUs with
a growing number of parallel requests: KaaS automatically
allocates new task runners to meet demand, keeping GPU
utilization high on each allocated GPU and task completion
time steady for clients.

start a new runner at exactly every increment of four parallel clients:
Instead, as some work (receiving a response, logging it, and prepar-
ing the next invocation) is done on the client, KaaS can use this
turnaround time to schedule more parallel work on the GPU than
the four in-flight request we limit it to. At the time we reach 32 par-
allel clients (the theoretical limit), only seven GPU task runners are
allocated that handle all parallel requests. Furthermore, we can also
observe that mean task completion time remains steady (although
of course it dips slightly when a new runner is started), leading
us to conclude that the KaaS model can successfully automatically
scale resources to meet demand.

5.6 Heterogeneity
Finally, we evaluate our prototypes for a heterogeneous range of
hardware accelerators using kernels specific to these devices. As
outlined in §4, we consider GPUs (§5.6.1), FPGAs (§5.6.2), TPUs
(§5.6.3), and QPUs (§5.6.4)

5.6.1 GPU. We compare a baseline of space sharing with KaaS
in our GPU prototype using different kernels. In addition to the
matrix multiplication kernel (MM), we add dynamic time warping
(DTW ), a genetic algorithm (GA), graph neural network training
(GNN ), Monte Carlo integration (MCI ), and a quantum computing
simulator (QC). DTW is implemented as softDTW [15] to calculate
the optimal distance between 200 batches of random ten-element
sequences of a given input length 𝑁 . The GA iteratively mutates
a population of 𝑁 100-element vectors ten times, using a fitness
function optimized for GPUs. GNN training uses the Deep Graph
Library (DGL) [86] and PyTorch to perform node classification with
a 2-layer graph convolutional network on the DGL Core Graph
Dataset, and we adapt the number of training iterations as 𝑁 . The
MCI implementation estimates the value of the definite integral∫ 10
1 1/𝑥 d𝑥 using 𝑁 samples [89]. The QC simulation uses the

0 500 1 k
0

1

2

3

4

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

)

DTW

0 2 k 4 k
0

5

10

15
GA

0 2 k 4 k
0

10

20

30

GNN

0 32 k 65 k
Task Granularity (N)

0

1

2

3

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

)

MCI

0 8 k 16 k
Task Granularity (N)

0

5

10

15
MM

0 32 k 65 k
Task Granularity (N)

0

5

10
QC

Baseline KaaS

Figure 14: Comparison of task completion times of dynamic
time warping (DTW ), genetic algorithm (GA), graph neural
network training (GNN ), Monte Carlo integration (MCI ), ma-
trix multiplication (MM), and quantum computing simulator
(QC) kernels between Nvidia GPUs with MPS (baseline) and
KaaS. KaaS successfully reduces task execution times by up
to 96%. Only GA with a high number of generations does not
benefit from KaaS with execution time increasing by 5.8%.

StateVector method of the AerSimulator of the Qiskit runtime [37,
91] to simulate quantum circuits of𝑁 CX gates combined in circuits.

The results in Fig. 14 show that KaaS can consistently decrease
the task completion times in our tests, up to a reduction of 96% for
MCI. The kernel implementations benefit from the optimizations
we have shown for thematrix multiplication kernel in §5.1. Only GA
with a high number of generations (4,096) shows execution times
increasing by up to 5.8%withKaaS. Interestingly, ourmeasurements
here reveal variability in the performance of GPUs in our cluster:
While the baseline always uses the first installed GPU (default
numba behavior), KaaS will try to allocate tasks evenly across the
GPUs, leading to a difference in task completion time of 1.85s (14.3%
slower) between GPUs. While the KaaS invocations on the first
GPU are 0.86s (6.2%) faster than in the baseline, the high variability,
likely exacerbated by the iterative nature of GA with frequent data
copy between host and accelerator, leads to a worse mean task
completion time.

5.6.2 FPGA. As an example for using the KaaS model on FPGAs,
we employ two PyLog kernels: Histogram computes a histogram
of integer values between 0 and 255 for a random array of length
2,097,504. We further use the Bitmap Conversion of Fig. 1. We com-
pare the total execution time between running these kernels by
directly accessing the FPGA from the test Python program (Ex-
clusive) and executing on the KaaS FPGA prototype. Note that we
do not measure FPGA IP configuration, which is on the order of
tens of seconds and is usually completed outside of kernel invo-
cations. Our test system is a Xilinx® Alveo™ U250 data center
FPGA with 64GB off-chip memory connected over PCIe to a host
with four 18-core Intel® Xeon® E7-8890 v3 CPUs (2.50Ghz) and
3TB memory. The results in Fig. 15 show that the same benefits
previously explored for GPUs extend to FPGAs, with mean FPGA



Middleware ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter et al.

Histogram Bitmap Conversion
FPGA Kernel

0.0

0.5

1.0

1.5

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

)

Baseline
KaaS

Figure 15: The mean total task completion time of the ker-
nel on our FPGA is reduced by 68.5% (Histogram) and 74.9%
(Bitmap Conversion) through the use of KaaS, which keeps
the FPGA and PyLog initialized for subsequent executions.

1 k 2 k 3 k 4 k 5 k 6 k 7 k
Task Granularity (N)

0

10

20

30

T
P
U

 T
im

e 
(s

) Exclusive
Shared
KaaS

(a) TPU Time

1 k 2 k 3 k 4 k 5 k 6 k 7 k
Task Granularity (N)

0

50

100

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

)

Exclusive
Shared
KaaS

(b) Task Completion Time

Figure 16: Our TPU kernel performs four parallel 2D convo-
lution using matrices of dimensions 𝑁 × 𝑁 on a four-chip
Google Cloud TPU. We compare an exclusive use with each
kernel execution queuing to use the TPU, a shared use with
each kernel instance using a fixed, distinct TPU chip, and an
extension of our KaaS prototype for TPUs.

time reduced by 68.5% (Histogram) and 74.9% (Bitmap Conversion).
Note that these reductions are still orders of magnitude from the
performance of hand-tuned FPGA kernels as KaaS cannot optimize
the performance of Python and PyLog. For reference, hand-tuned
kernels show completions times between 80 and 100ms on our test
system.

5.6.3 TPU. Our kernel performs a 2D convolution on an 𝑁 ×
𝑁 matrix using the appropriate implementation in the Tensor-
Flow library [2]. We test this on a Google Cloud v3-8 TPU VM
in the us-central1-a region with a four-chip, eight-core TPU v3

QASM
Sim.

MPS
Sim.

StateVector
Sim.

Falcon
r5.11H

Falcon
r4T

Quantum Computing Backends

0

5

10

T
as

k 
C
om

pl
et

io
n

T
im

e 
(s

)

Baseline
KaaS

Figure 17: The KaaS model reduces mean task completion
time by 34.9% for the QASM simulator, 34.8% for the MPS sim-
ulator, 34.3% for the StateVector simulator, 33.3% on Falcon
r5.11H, and 27.3% on the Falcon r4T.

with 16GB of memory per chip, two 24-core Intel® Xeon® CPUs
(2.00GHz), and 340GB memory.

We show the impact of different accelerator use models in Fig. 16,
with four parallel instances of the kernel. In exclusive TPU use,
each kernel execution blocks the entire TPU. As shown in Fig. 16a,
this leads to a faster kernel execution on the TPU compared to
shared TPU use, where each concurrent instance of the task is
assigned one of the four TPU chips for execution. Interestingly,
the TPU execution time does not scale proportionally with the
input data size. This effect remains consistent across repetitions of
the experiment, and we attribute it to internal optimizations that
TensorFlowmakes in choosing a convolution implementation based
on the input parameters. While this effect is also present with our
KaaS implementation, the overall kernel execution time is reduced
between 81.3% and 99.6% compared to the exclusive execution. As
with other accelerators we have tested, we attribute this reduction
to the removal of TPU management overhead from the critical path
of kernel execution.

A large part of the total task completion time shown in Fig. 16b
is the time required to import the necessary libraries, most notably
TensorFlow. As this cannot happen in parallel in the exclusive TPU
use, as TensorFlow initialization also initializes the available TPU,
the overall task time follows a scaled pattern of the kernel execution
time. In the shared model, some parallelization is possible as each
concurrent kernel invocation has access to a specific TPU chip. The
KaaS prototype performs best, as initialization overhead of TPU
and TensorFlow is moved out of the critical path, reducing overall
task completion time by between 95.9% and 98.6%.

5.6.4 QPU. As a preliminary evaluation of KaaS on QPUs, we im-
plement a single point electronic structure calculation using the
Variational Quantum Eigensolver (VQE) [65]. The “quantum kernel”
in this application is an estimator primitive, while transpilation
occurs on classical hardware. We specifically compare “cold starts”
of our quantum operation as a baseline against the possibility of
calling into cached copies of the kernel, part of the KaaS approach.
As VQE is an iterative process, reductions in kernel overhead accu-
mulated over multiple repetitions can decrease overall execution
duration.

We deploy three simulation environments: Quantum Assembly
Language (QASM), a 32-qubit simulator, Matrix Product State (MPS),



Kernel-as-a-Service: A Serverless Programming Model for Heterogeneous Hardware Accelerators Middleware ’23, December 11–15, 2023, Bologna, Italy

a 100-qubit simulator, and StateVector, a 32-qubit Schrödinger wave
function simulator. Further, we deploy on two quantum computers
through IBM Quantum, namely on Falcon r4T and Falcon r5.11H
processors with five and seven superconducting qubits, respec-
tively [36].

The results in Fig. 17 are preliminary yet promising, as they show
the benefits of the KaaS approach with regard to task completion
times and encourage further investigation.

6 DISCUSSION & FUTUREWORK
In this section, we critically discuss questions on generality, appli-
cability, and limitations of the KaaS approach.

Applications. The applicability ofKaaS is, of course, limited to work-
loads that can benefit from the introduction of hardware accelera-
tion. Beyond this general limitation, the caveats of running appli-
cations as compositions of individual functions and kernels must
be considered, similarly to the FaaS execution model [41, 71]. For
example, long-running tasks that can span across multiple homoge-
neous compute resources, e.g., by exploiting heavy parallelism, may
be better served by traditional accelerator programming models.

Nevertheless, we foresee a range of domains adopting heteroge-
neous infrastructure and distributed workflows in the future, espe-
cially in the fields of high-performance computing, data analytics,
and AI [20]. Examples of these demanding workflows with a hetero-
geneous range of tasks are already starting to emerge in research:
visual simultaneous localization and mapping (SLAM) [9, 81] for
AR and metaverse applications combines real-time image decoding
and feature extraction tasks that can be accelerated with GPUs and
FPGAs [18, 24] in addition to general CPU components. ML-steered
ensemble simulations combine the power of simulation tasks, e.g.,
in quantum chemistry [10], with machine learning steering to re-
duce the total number of necessary computations [88], with each
task benefiting from a different kind of compute accelerator. Earth
observation workflows combine processing on domain-specific
compute units on satellites with image processing units on Earth
for optimized data processing pipelines [16, 34, 83].

Implications for Computer Architectures. Changing how applica-
tions interface with hardware accelerators also creates opportu-
nities for hardware-software co-design. One current trend is dis-
aggregating compute resources [5, 52], where computation in a
system is not centered on CPUs but rather heterogeneous hard-
ware communicating over an interconnect. Here, KaaS can serve
as an abstraction to these resources, as the composition of kernels
happens at the logical software level compared to the composition
of disparate compute resources at the hardware [62].

Higher levels of sharing also increase flexibility in accelerator
deployment. For example, a larger GPU is easier to subdivide, but
smaller devices could transparently be used for smaller kernels
and service providers could increase margins if these devices can
be created more economically. Variability in GPUs can also be
abstracted from at the platform level, obviating the need for load
balancing by applications [80].

Our current KaaS prototypes rely on TCP connections to invoke
kernels using a frontend running on CPUs. A more efficient co-
designed implementation may rely on advanced methods for signal-
ing, such as RDMA [14], to further reduce the invocation overhead
in both delay and required host resources. Here, smartNICs [11]
could be employed for load-balancing, data de-serialization, or accel-
erator configuration, increasing the efficiency of kernel invocations
further by completely eliminating the need for a CPU.

Data Movement. In KaaS as in FaaS, the composition of individ-
ual tasks into larger workflows requires data movement between
components. This data-shipping architecture of FaaS has been well-
researched [54, 67, 71, 73, 99]. While avoidable through data-aware
scheduling and the adoption of a function-shipping architecture,
current hardware architectures require data movement in KaaS
as data must still be copied to hardware accelerator memory for
kernel executions. Although our evaluation has shown that this
price is worth paying for higher kernel performance and perfor-
mance efficiency, we believe that new hardware architectures using
technologies such as fabric-attached memory will further improve
performance for heterogeneous workflows [72]. The possibility
of kernel fusion, where two adjacent kernels targeting the same
accelerator are combined to minimize data movement, could also
be explored in the future [74].

Security & Isolation. The disaggregation of accelerators described in
§3 could also lead to a more flexible security model. Without KaaS,
applications have no assurances that other users of the accelerator
are safe, so the typical security model requires either exclusive use
for a single application [3] or some sort of static partitioning such as
offered by Multi-Instance GPU [47, 59], which both come with their
own inefficiencies and limitations. In contrast, in the KaaSmodel an
accelerator could be allocated to run only a single application, under
the assumption that some workloads are large and busy enough to
justify dedicating entire accelerators to a single kernel. Access to
both code and data on the accelerator is strictly controlled by the
runtime only, so sharing a device across users can offer additional
safety assumptions which lead to finer-grained resource allocation
and isolation and, consequently, higher efficiencies.

That said, the model still allows for a range of security policies
including exclusive use of the accelerator by a single user, so it
does not limit users to a single security policy. With additional
development, this model also open the door to an integrating re-
source management, quality-of-service (QoS), and security with a
flexibility that is not typically offered by off-the-shelf operating sys-
tems. For example, CHERI enables both data and execution memory
protection in hardware [57], e.g., for fabric-attached memory [8].
Recently, CHERI has been delivered on ARM processors and for
the Kitten operating system [29]. Hardware protection for KaaS
would allow transparent partitioning of accelerators in both mem-
ory and cores, leaving interconnects as a common resource, yet still
requiring additional support for QoS.

Scheduling and Resource Management. Incidentally, the same del-
egation of selected OS responsibilities to the KaaS runtime also
offers renewed potential for additional flexibility in scheduling and
resource management. The runtime can collect focused execution



Middleware ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter et al.

histories and can thus better estimate the resource and QoS re-
quirements of kernel requests, leading to better decisions on how
to allocate computational resources in space and time [76, 100].
Even at the datacenter level, KaaS opens the door to extending
energy-efficient resource management approaches based on pre-
dictive usage, such as dynamically shutting down portions of a
compute cluster [13, 68, 69]. These aspects are outside the scope of
this paper and remain open for future research.

Dynamic Optimizations. Through centralizing resource manage-
ment inKaaS and the resulting economy of scale, dynamic optimiza-
tions are possible that are not feasible for individual applications.
For example, the overlapping of multiple kernel invocations, possi-
bly of different tenants or applications, across accelerators could
reduce idle time of accelerators, further decreasing energy con-
sumption. Further, the provider could dynamically replace kernel
implementations or hardware resources where possible. Without
reconfiguring an application or workflow, newer generations or
different SKUs of a hardware accelerator could be swapped in to
increase performance efficiency [62, 63].

7 RELATEDWORK
The FaaS paradigm has taken off recently with an explosion of com-
mercial offerings and open-source software, followed by extensive
academic research [75]. Like application kernels in heterogeneous
computing, serverless functions are often fine-grained and require
careful orchestration to optimize resource utilization [38, 45, 51].
Some work also specifically addresses the use of accelerators (pre-
dominantly, GPUs) in serverless computing [50, 53, 70, 90].

Despite the similarities, our work is not strictly about cloud or
serverless computing—from which we borrow our main ideas—but
rather about heterogeneous computing using accelerators. Offload-
ing an algorithm’s core to run on accelerators to obtain higher per-
formance and energy efficiency is an active area of research across
computer science. Examples include dense [23] and sparse [26]
matrix operations (especially in the context of deep learning), com-
puter vision algorithms [66], and genetic algorithms [40].

While kernel offloading by a single application is a relatively
well studied problem, there remain several technical challenges
to the efficient sharing of accelerator resources across applica-
tions or VMs [39, 49, 95]. This sharing can take place in the time
dimension (multiple processes accessing the complete accelera-
tor in different time slots); in the space dimension (multiple pro-
cesses accessing subsets of the accelerator at the same time); or
both. As a commercial offering, HPE GPUaaS [33] allows dynam-
ically (re-)assigning full GPUs to containers in a private cluster.
For security reasons, they do not allow space-sharing of a sin-
gle GPU. GSLICE [17] spatially multiplexes the GPU to increase
system throughput. Pagoda [93] maximizes GPU throughput by
co-scheduling kernels with high and low resource requirements
concurrently. Zhang et al. [97] propose a runtime system that care-
fully allocates the computation resource to colocated applications,
maximizing their throughput while adhering to QoS constraints.

In time sharing (preemptive multitasking), Wu et al. [92] propose
FLEP, which transforms GPU kernels into preemptible forms which
can be interrupted during execution and yield all or part of a GPU’s
execution units. A different emphasis on preemption to maintain

real-time constraints is recently proposed by Ayala-Barbosa and
Mendez-Monroy [6]. An example of combining time and space
sharing is introduced by Wang et al. as Simultaneous Multikernel,
which aims to maximize accelerator utilization by co-scheduling
kernels with mutually compatible resource requirements [87].

Pemberton et al. [64] propose a low-code interface for GPU
kernel tasks where developers compose applications of pre-existing,
optimized GPU primitives, a similar level of abstraction as KaaS.
Requiring the use of pre-built primitives instead of custom code
or third-party libraries allows higher control over security and
isolation with current GPU APIs, yet trades off the generalizability
we target with KaaS.

These approaches are important in their own right, yet have
a narrow focus on GPU performance and programmability. With
KaaS, in contrast, we propose a programming interface and ab-
stractions for applications that take advantage of heterogeneous
hardware, with CPUs, GPUs, FPGAs, and others as equal execution
targets for kernels and fine-grained, dynamic resource allocation
to multiple applications.

8 CONCLUSION
With Kernel-as-a-Service, we have introduced a new serverless pro-
gramming model for hardware accelerators by adopting concepts
of the FaaS paradigm. Our experimental evaluation of KaaS pro-
totypes on GPU, FPGA, TPU, and QPU demonstrates the viability
and efficiency of this approach beyond device-specific frameworks.
We have shown how finely-grained tasks in particular can derive
performance, efficiency, and usability benefits in KaaS.

The future of computing systems will require managing disag-
gregated software on heterogeneous hardware, and KaaS is a first
step towards an abstraction between these layers. Further research
will require an even broader scope of evaluation of this paradigm
with large-scale clusters and larger applications. We also plan to ex-
plore how FaaS and KaaS can be efficiently integrated to provide a
seamless experience for developers. Finally, we intend to investigate
possibilities of hardware/software co-design for security, isolation,
and performance.

ACKNOWLEDGMENTS
We thank our anonymous reviewers and our shepherdDjobMvondo
for their insightful feedback that helped shape this paper. We also
thank our colleagues at Hewlett Packard Labs for discussions and
assistance during completion of our work.

We acknowledge the use of IBM Quantum services for this work.
The views expressed are those of the authors, and do not reflect the
official policy or position of IBM or the IBM Quantum team.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal
Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, MartinWattenberg, MartinWicke, Yuan Yu, and Xiaoqiang Zheng. 2015.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Google
Research. Retrieved May 10, 2023 from https://www.tensorflow.org/

https://www.tensorflow.org/


Kernel-as-a-Service: A Serverless Programming Model for Heterogeneous Hardware Accelerators Middleware ’23, December 11–15, 2023, Bologna, Italy

[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal
Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2022. tf.nn.conv2d | TensorFlow v2.11.0. Google Research. Retrieved December
1, 2022 from https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

[3] Giovanni Agosta, William Fornaciari, Giuseppe Massari, Anna Pupykina, Fed-
erico Reghenzani, and Michele Zanella. 2018. Managing Heterogeneous Re-
sources in HPC Systems. In Proceedings of the 9th Workshop and 7th Work-
shop on Parallel Programming and RunTime Management Techniques for Many-
core Architectures and Design Tools and Architectures for Multicore Embed-
ded Computing Platforms (Manchester, United Kingdom) (PARAM-DITAM ’18).
Association for Computing Machinery (ACM), New York, NY, USA, 7–12.
https://doi.org/10.1145/3183767.3183769

[4] AMD Xilinx. 2022. Pynq: Python Productivity for Zynq. Retrieved December 2,
2022 from http://pynq.io

[5] Krste Asanović. 2014. FireBox: A Hardware Building Block for 2020 Warehouse-
Scale Computers. In Proceedings of the 12th USENIX Conference on File and
Storage Technologies (Santa Clara, CA, USA) (FAST ’14). USENIX, Berkeley, CA,
USA.

[6] Jose Antonio Ayala-Barbosa and Paul Erick Mendez-Monroy. 2022. A new pre-
emptive task scheduling framework for heterogeneous embedded systems. In
Proceedings of the 2022 8th International Conference on Computer Technology Ap-
plications (Vienna, Austria) (ICCTA ’22). Association for Computing Machinery
(ACM), New York, NY, USA, 77–84. https://doi.org/10.1145/3543712.3543756

[7] Ioana Baldini, Perry Cheng, Stephen J. Fink, Nick Mitchell, Vinod Muthusamy,
Rodric Rabbah, Philippe Suter, and Olivier Tardieu. 2017. The Serverless
Trilemma: Function Composition for Serverless Computing. In Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Vancouver, BC, Canada) (On-
ward! 2017). Association for Computing Machinery (ACM), New York, NY, USA,
89–103. https://doi.org/10.1145/3133850.3133855

[8] Kirk M. Bresniker, Paolo Faraboschi, Avi Mendelson, Dejan Milojicic, Timothy
Roscoe, and Robert N. M. Watson. 2019. Rack-Scale Capabilities: Fine-Grained
Protection for Large-Scale Memories. Computer 52, 2 (Feb. 2019), 52–62. https:
//doi.org/10.1109/MC.2018.2888769

[9] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José MM Montiel,
and Juan D. Tardós. 2021. ORB-SLAM3: An Accurate Open-Source Library for
Visual, Visual-Inertial, and Multimap SLAM. IEEE Transactions on Robotics 37, 6
(May 2021), 1874–1890. https://doi.org/10.1109/TRO.2021.3075644

[10] Yudong Cao, Jonathan Romero, Jonathan P. Olson, Matthias Degroote, Peter D.
Johnson,Mária Kieferová, Ian D. Kivlichan, TimMenke, Borja Peropadre, Nicolas
P. D. Sawaya, Sukin Sim, Libor Veis, and Alán Aspuru-Guzik. 2019. Quantum
Chemistry in the Age of Quantum Computing. Chemical Reviews 119, 19 (Aug.
2019), 10856–10915. https://doi.org/10.1021/acs.chemrev.8b00803

[11] Adrian Caulfield, Paolo Costa, and Monia Ghobadi. 2018. Beyond SmartNICs:
Towards a Fully Programmable Cloud. In Proceedings of the 19th International
Conference on High Performance Switching and Routing (Bucharest, Romania)
(HPSR ’18). IEEE, New York, NY, USA, 1–6. https://doi.org/10.1109/HPSR.2018.
8850757

[12] Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard, Ben
Blaiszik, Ian Foster, and Kyle Chard. 2020. funcX: A Federated Function Serving
Fabric for Science. In Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing (Virtual Event, USA) (HPDC
’20). Association for Computing Machinery (ACM), New York, NY, USA, 65–76.
https://doi.org/10.1145/3369583.3392683

[13] Marcin Copik, Marcin Chrapek, Alexandru Calotoiu, and Torsten Hoefler. 2022.
Software Resource Disaggregation for HPC with Serverless Computing. Technical
Report. Scalable Parallel Computing Lab, ETH Zürich, Zurich, Switzerland.

[14] Marcin Copik, Konstantin Taranov, Alexandru Calotoiu, and Torsten Hoefler.
2023. rFaaS: Enabling High Performance Serverless with RDMA and Leases.
In Proceedings of the 37th IEEE International Parallel &Distributed Processing
Symposium (St. Petersburg, FL, USA) (IPDPDS ’23). IEEE, New York, NY, USA.

[15] Marco Cuturi and Mathieu Blondel. 2017. Soft-DTW: A Differentiable Loss
Function for Time-Series. In Proceedings of the 34th International Conference
on Machine Learning (Sydney, NSW, Australia) (ICML ’17). Journal of Machine
Learning Research, 894–903.

[16] Bradley Denby and Brandon Lucia. 2020. Orbital Edge Computing: Nanosatel-
lite Constellations as a New Class of Computer System. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for Computing Machinery (ACM), New York, NY, USA, 939–954.
https://doi.org/10.1145/3373376.3378473

[17] Aditya Dhakal, Sameer G. Kulkarni, and K. K. Ramakrishnan. 2020. GSLICE:
Controlled Spatial Sharing of GPUs for a Scalable Inference Platform. In Pro-
ceedings of the 11th ACM Symposium on Cloud Computing (Virtual Event, USA)
(SoCC ’20). Association for Computing Machinery (ACM), New York, NY, USA,
492–506. https://doi.org/10.1145/3419111.3421284

[18] Aditya Dhakal, Xukan Ran, Yunshu Wang, Jiasi Chen, and K. K. Ramakrishnan.
2022. SLAM-Share: Visual Simultaneous Localization and Mapping for Real-
Time Multi-User Augmented Reality. In Proceedings of the 18th International
Conference on Emerging Networking EXperiments and Technologies (Rome, Italy)
(CoNEXT ’22). Association for Computing Machinery (ACM), New York, NY,
USA, 293–306. https://doi.org/10.1145/3555050.3569142

[19] Dong Du, Qingyuan Liu, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo
Chen. 2022. Serverless Computing on Heterogeneous Computers. In Proceedings
of the 27th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22).
Association for Computing Machinery (ACM), New York, NY, USA, 797–813.
https://doi.org/10.1145/3503222.3507732

[20] Nicolas Dube, Duncan Roweth, Paolo Faraboschi, and Dejan Milojicic. 2021.
Future of HPC: The Internet of Workflows. IEEE Internet Computing 25, 5 (Aug.
2021), 26–34. https://doi.org/10.1109/MIC.2021.3103236

[21] Jorge Ejarque, Rosa M. Badia, Loïc Albertin, Giovanni Aloisio, Enrico Baglione,
Yolanda Becerra, Stefan Boschert, Julian R. Berlin, Alessandro D’Anca, Donatello
Elia, et al. 2022. Enabling dynamic and intelligent workflows for HPC, data
analytics, and AI convergence. Future generation computer systems 134 (Sept.
2022), 414–429. https://doi.org/10.1016/j.future.2022.04.014

[22] Donatello Elia, Sandro Fiore, and Giovanni Aloisio. 2021. Towards HPC and
Big Data Analytics Convergence: Design and Experimental Evaluation of a
HPDA Framework for eScience at Scale. IEEE Access 9 (May 2021), 73307–73326.
https://doi.org/10.1109/ACCESS.2021.3079139

[23] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. 2004. Understanding
the Efficiency of GPU Algorithms for Matrix-Matrix Multiplication. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware
(Grenoble, France) (HWWS ’04). Association for Computing Machinery (ACM),
New York, NY, USA, 133–137. https://doi.org/10.1145/1058129.1058148

[24] Marcel Flottmann, Marc Eisoldt, Julian Gaal, Marc Rothmann, Marco Tasse-
meier, Thomas Wiemann, and Mario Porrmann. 2021. Energy-efficient FPGA-
accelerated LiDAR-based SLAM for embedded robotics. In Proceedings of the
2021 International Conference on Field-Programmable Technology (Auckland, New
Zealand) (ICFPT ’21). IEEE, New York, NY, USA, 1–6. https://doi.org/10.1109/
ICFPT52863.2021.9609934

[25] Eitan Frachtenberg. 2021. Experience and Practice Teaching an Undergraduate
Course on Diverse Heterogeneous Architectures. In Proceedings of the 2021
IEEE/ACM Ninth Workshop on Education for High Performance Computing (St.
Louis, MO, USA) (EduHPC ’21). IEEE, New York, NY, USA, 1–8. https://doi.org/
10.1109/EduHPC54835.2021.00006

[26] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU
Kernels for Deep Learning. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (Atlanta, GA,
USA) (SC ’20). IEEE, New York, NY, USA, 1–14. https://doi.org/10.1109/SC41405.
2020.00021

[27] Rajesh Gandham, Yongpeng Zhang, Kenneth Esler, and Vincent Natoli. 2021.
Improving GPU throughput of reservoir simulations using NVIDIA MPS and
MIG. In Proceedings of the Fifth EAGE Workshop on High Performance Computing
for Upstream (Online). European Association of Geoscientists & Engineers,
Houten, The Netherlands, 1–5. https://doi.org/10.3997/2214-4609.2021612025

[28] Andreas Gerstmayr, Ken McDonell, Lukas Berk, Mark Goodwin, Marko Myl-
lynen, and Nathan Scott. 2022. Performance Co-Pilot. Red Hat, Inc. Retrieved
October 1, 2022 from https://pcp.io/

[29] Nicholas Gordon, Kevin Pedretti, and John R. Lange. 2022. Porting the Kit-
ten Lightweight Kernel Operating System to RISC-V. In Proceedings of the
International Workshop on Runtime and Operating Systems for Supercomput-
ers (Dallas, TX, USA) (ROSS ’22). IEEE, New York, NY, USA, 1–7. https:
//doi.org/10.1109/ROSS56639.2022.00008

[30] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chidambaram,
Mahmut T. Kandemir, and Chita R. Das. 2020. Fifer: Tackling Underutilization
in the Serverless Era. (Aug. 2020). arXiv:2008.12819

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (Las Vegas, NV, USA) (CVPR 2016). IEEE,
New York, NY, USA, 770–778. https://doi.org/10.1109/CVPR.2016.90

[32] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2016.
Serverless Computation with OpenLambda. In Proceedings of the 8th USENIX
Workshop on Hot Topics in Cloud Computing (Denver, CO, USA) (HotCloud ’16).
USENIX Association, Berkeley, CA, USA.

[33] Hewlett Packard Enterprise. 2020. Enabling GPU as a Service – A Cloud-Like
Experience for GPU Infrastructure using Containers (Solution Brief). Retrieved
September 11, 2023 from https://www.hpe.com/psnow/doc/a00075067enw

https://www.tensorflow.org/api_docs/python/tf/nn/conv2d
https://doi.org/10.1145/3183767.3183769
http://pynq.io
https://doi.org/10.1145/3543712.3543756
https://doi.org/10.1145/3133850.3133855
https://doi.org/10.1109/MC.2018.2888769
https://doi.org/10.1109/MC.2018.2888769
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1109/HPSR.2018.8850757
https://doi.org/10.1109/HPSR.2018.8850757
https://doi.org/10.1145/3369583.3392683
https://doi.org/10.1145/3373376.3378473
https://doi.org/10.1145/3419111.3421284
https://doi.org/10.1145/3555050.3569142
https://doi.org/10.1145/3503222.3507732
https://doi.org/10.1109/MIC.2021.3103236
https://doi.org/10.1016/j.future.2022.04.014
https://doi.org/10.1109/ACCESS.2021.3079139
https://doi.org/10.1145/1058129.1058148
https://doi.org/10.1109/ICFPT52863.2021.9609934
https://doi.org/10.1109/ICFPT52863.2021.9609934
https://doi.org/10.1109/EduHPC54835.2021.00006
https://doi.org/10.1109/EduHPC54835.2021.00006
https://doi.org/10.1109/SC41405.2020.00021
https://doi.org/10.1109/SC41405.2020.00021
https://doi.org/10.3997/2214-4609.2021612025
https://pcp.io/
https://doi.org/10.1109/ROSS56639.2022.00008
https://doi.org/10.1109/ROSS56639.2022.00008
https://arxiv.org/abs/2008.12819
https://doi.org/10.1109/CVPR.2016.90
https://www.hpe.com/psnow/doc/a00075067enw


Middleware ’23, December 11–15, 2023, Bologna, Italy Tobias Pfandzelter et al.

[34] Anahita Hosseinkhani and Behnam Ghavami. 2021. Improving Soft Error
Reliability of FPGA-based Deep Neural Networks with Reduced Approximate
TMR. In Proceedings of the 2021 11th International Conference on Computer
Engineering and Knowledge (Mashhad, Iran) (ICCKE ’21). IEEE, New York, NY,
USA, 459–464. https://doi.org/10.1109/ICCKE54056.2021.9721442

[35] Sitao Huang, Kun Wu, Hyunmin Jeong, Chengyue Wang, Deming Chen, and
Wen-Mei Hwu. 2021. Pylog: An algorithm-centric python-based FPGA program-
ming and synthesis flow. IEEE Trans. Comput. 70, 12 (Oct. 2021), 2015–2028.
https://doi.org/10.1109/TC.2021.3123465

[36] IBM Quantum. 2021. IBM Quantum Processor Types. Retrieved May 24, 2023
from https://quantum-computing.ibm.com/services/resources/docs/resources/
manage/systems/processors

[37] IBM Quantum. 2022. Qiskit. Retrieved December 2, 2022 from https://qiskit.org/
[38] Al Amjad Tawfiq Isstaif and Richard Mortier. 2023. Towards Latency-Aware

Linux Scheduling for Serverless Workloads. In Proceedings of the 1st Workshop
on SErverless Systems, Applications and MEthodologies (Rome, Italy) (SESAME
’23). Association for Computing Machinery (ACM), New York, NY, USA, 19–26.
https://doi.org/10.1145/3592533.3592807

[39] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian,
Wencong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant
GPU Clusters for DNN Training Workloads. In Proceedings of the 2019 USENIX
Annual Technical Conference (Renton, WA, USA) (ATC ’19). USENIX Association,
Berkeley, CA, USA, 947–960.

[40] Fauzi Mohd Johar, Farah Ayuni Azmin, Mohamad Kadim Suaidi, Abdul Samad
Shibghatullah, Badrul Hisham Ahmad, Siti Nadzirah Salleh, Mohamad
Zoinol Abidin Abd Aziz, and Mahfuzah Md Shukor. 2013. A review of ge-
netic algorithms and parallel genetic algorithms on graphics processing unit
(GPU). In Proceedings of the 2013 International Conference on Control System,
Computing and Engineering (Penang, Malaysia) (ICCSCE ’13). IEEE, New York,
NY, USA, 264–269. https://doi.org/10.1109/ICCSCE.2013.6719971

[41] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud Programming Simplified: A Berkeley View on
Serverless Computing. Technical Report UCB/EECS-2019-3. EECS Department,
University of California, Berkeley, Berkeley, CA, USA. https://www2.eecs.
berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html

[42] Norman P. Jouppi, Doe Hyun Yoon, George Kurian, Sheng Li, Nishant Patil,
James Laudon, Cliff Young, and David Patterson. 2020. A Domain-Specific
Supercomputer for Training Deep Neural Networks. Commun. ACM 63, 7 (June
2020), 67–78. https://doi.org/10.1145/3360307

[43] Hamidreza Khaleghzadeh, Ziming Zhong, Ravi Reddy, and Alexey Lastovetsky.
2017. Out-of-core implementation for accelerator kernels on heterogeneous
clouds. The Journal of Supercomputing 74, 2 (Sept. 2017), 551–568. https:
//doi.org/10.1007/s11227-017-2141-4

[44] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstrac-
tions make sense on FPGAs?. In Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation (Online) (OSDI ’20). USENIX
Association, Berkeley, CA, USA, 991–1010.

[45] Jörn Kuhlenkamp, SebastianWerner,Maria C. Borges, Dominik Ernst, andDaniel
Wenzel. 2020. Benchmarking Elasticity of FaaS Platforms as a Foundation for
Objective-driven Design of Serverless Applications. In Proceedings of the 35th
Annual ACM Symposium on Applied Computing (Brno, Czech Republic) (SAC ’20).
Association for Computing Machinery (ACM), New York, NY, USA, 1576–1585.
https://doi.org/10.1145/3341105.3373948

[46] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: A LLVM-
Based Python JIT Compiler. In Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC (Austin, TX, USA) (LLVM ’15). Association for
Computing Machinery (ACM), New York, NY, USA, 1–6. https://doi.org/10.
1145/2833157.2833162

[47] Baolin Li, Tirthak Patel, Siddarth Samsi, Vijay Gadepally, and Devesh Tiwari.
2022. Using Multi-Instance GPU for Efficient Operation of Multi-Tenant GPU
Clusters. (July 2022). arXiv:2207.11428

[48] Junfeng Li, Sameer G. Kulkarni, K. K. Ramakrishnan, and Dan Li. 2019. Un-
derstanding Open Source Serverless Platforms: Design Considerations and
Performance. In Proceedings of the 5th International Workshop on Serverless Com-
puting (Davis, CA, USA) (WoSC ’19). Association for Computing Machinery
(ACM), New York, NY, USA, 37–42. https://doi.org/10.1145/3366623.3368139

[49] Teng Li, Vikram K. Narayana, Esam El-Araby, and Tarek El-Ghazawi. 2011. GPU
Resource Sharing and Virtualization on High Performance Computing Systems.
In Proceedings of the 2011 International Conference on Parallel Processing (Taipei,
Taiwan) (ICPP ’11). IEEE, New York, NY, USA, 733–742. https://doi.org/10.1109/
ICPP.2011.88

[50] Fabio Maschi, Dario Korolija, and Gustavo Alonso. 2023. Serverless FPGA:
Work-In-Progress. In Proceedings of the 1st Workshop on SErverless Systems,
Applications and MEthodologies (Rome, Italy) (SESAME ’23). Association for
Computing Machinery (ACM), New York, NY, USA, 1–4. https://doi.org/10.
1145/3592533.3592804

[51] Anil Mathew, Vasilios Andrikopoulos, and Frank J. Blaauw. 2021. Exploring the
cost and performance benefits of AWS Step Functions using a data processing
pipeline. In Proceedings of the 14th IEEE/ACM International Conference on Utility
and Cloud Computing (Leicester, United Kingdom) (UCC ’21). Association for
Computing Machinery (ACM), New York, NY, USA, 1–10. https://doi.org/10.
1145/3468737.3494084

[52] Dejan Milojicic, Paolo Faraboschi, Nicolas Dube, and Duncan Roweth. 2021.
Future of HPC: Diversifying Heterogeneity. In Proceedings of the 2021 Design,
Automation & Test in Europe Conference & Exhibition (Grenoble, France) (DATE
’21). IEEE, New York, NY, USA, 276–281. https://doi.org/10.23919/DATE51398.
2021.9474063

[53] Diana M. Naranjo, Sebastián Risco, Carlos de Alfonso, Alfonso Pérez, Ignacio
Blanquer, and Germán Moltó. 2020. Accelerated serverless computing based
on GPU virtualization. J. Parallel and Distrib. Comput. 139 (May 2020), 32–42.
https://doi.org/10.1016/j.jpdc.2020.01.004

[54] Anna Maria Nestorov, Josep Lluís Berral, Claudia Misale, Chen Wang, David
Carrera, and Alaa Youssef. 2022. Floki: A Proactive Data Forwarding System for
Direct Inter-Function Communication for Serverless Workflows. In Proceedings
of the Eighth International Workshop on Container Technologies and Container
Clouds (Quebec City, QC, Canada) (WoC ’22). Association for ComputingMachin-
ery (ACM), New York, NY, USA, 13–18. https://doi.org/10.1145/3565384.3565890

[55] Sam Newman. 2015. Building Microservices. O’Reilly Media, Inc., Sebastopol,
CA, USA.

[56] Kim Nguyen and Sam Chung. 2021. LowMaintenance, Low Cost, Highly Secure,
and Highly Manageable Serverless Solutions for Software Reverse Engineer-
ing. In Proceedings of the Conference on Information Systems Applied Research
(Washington, DC, USA) (CONISAR ’21). Information Systems and Computing
Academic Professionals, 1–10.

[57] Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony Fox,
Michael Roe, Brian Campbell, Matthew Naylor, Robert M. Norton, Simon W.
Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell.
2020. Rigorous engineering for hardware security: Formal modelling and proof
in the CHERI design and implementation process. In Proceedings of the 2020
IEEE Symposium on Security and Privacy (San Francisco, CA, USA) (SP ’20). IEEE,
New York, NY, USA, 1003–1020. https://doi.org/10.1109/SP40000.2020.00055

[58] NVIDIA. 2023. Multi-Process Service. Retrieved May 25, 2023 from https:
//docs.nvidia.com/deploy/mps/index.html

[59] NVIDIA. 2023. NVIDIA Multi-Instance GPU. Retrieved May 25, 2023 from
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/

[60] Jacob Pan. 2013. RAPL (Running Average Power Limit) driver. Intel Corporation.
Retrieved December 2, 2022 from https://lwn.net/Articles/545745/

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32.
Neural Information Processing Systems Foundation, 8024–8035.

[62] Nathan Pemberton. 2022. The Serverless Datacenter: Hardware and Software Tech-
niques for Resource Disaggregation. Ph. D. Dissertation. University of California,
Berkeley, Berkeley, CA, USA. Advisor(s) Randy Katz.

[63] Nathan Pemberton and Johann Schleier-Smith. 2019. The Serverless Data Center:
Hardware Disaggregation Meets Serverless Computing. In Proceedings of the
First Workshop on Resource Disaggregation (Providence, RI, USA) (WORD ’19).

[64] Nathan Pemberton, Anton Zabreyko, Zhoujie Ding, Randy Katz, and Joseph
Gonzalez. 2022. Kernel-as-a-Service: A Serverless Interface to GPUs. (Dec. 2022).
arXiv:2212.08146

[65] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi
Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’brien. 2014. A varia-
tional eigenvalue solver on a photonic quantum processor. Nature communica-
tions 5, 1, Article 4213 (July 2014), 7 pages. https://doi.org/10.1038/ncomms5213

[66] Murad Qasaimeh, Kristof Denolf, Jack Lo, Kees Vissers, Joseph Zambreno, and
Phillip H. Jones. 2019. Comparing energy efficiency of CPU, GPU and FPGA
implementations for vision kernels. In Proceedings of the International 2019 IEEE
International Conference on Embedded Software and Systems (Las Vegas, NV,
USA) (ICESS ’19). IEEE, New York, NY, USA, 1–8. https://doi.org/10.1109/ICESS.
2019.8782524

[67] Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and K. K. Ramakr-
ishnan. 2022. SPRIGHT: Extracting the Server from Serverless Computing!
High-Performance EBPF-Based Event-Driven, Shared-Memory Processing. In
Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands)
(SIGCOMM ’22). Association for Computing Machinery (ACM), New York, NY,
USA, 780–794. https://doi.org/10.1145/3544216.3544259

[68] Issam Raïs, Anne-Cécile Orgerie, and Martin Quinson. 2016. Impact of Shut-
down Techniques for Energy-Efficient Cloud Data Centers. In Proceedings of
the International Conference on Algorithms and Architectures for Parallel Pro-
cessing (Granada, Spain) (ICA3PP ’16). Springer, Heidelberg, Germany, 203–210.
https://doi.org/10.1007/978-3-319-49583-5_15

https://doi.org/10.1109/ICCKE54056.2021.9721442
https://doi.org/10.1109/TC.2021.3123465
https://quantum-computing.ibm.com/services/resources/docs/resources/manage/systems/processors
https://quantum-computing.ibm.com/services/resources/docs/resources/manage/systems/processors
https://qiskit.org/
https://doi.org/10.1145/3592533.3592807
https://doi.org/10.1109/ICCSCE.2013.6719971
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-3.html
https://doi.org/10.1145/3360307
https://doi.org/10.1007/s11227-017-2141-4
https://doi.org/10.1007/s11227-017-2141-4
https://doi.org/10.1145/3341105.3373948
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://arxiv.org/abs/2207.11428
https://doi.org/10.1145/3366623.3368139
https://doi.org/10.1109/ICPP.2011.88
https://doi.org/10.1109/ICPP.2011.88
https://doi.org/10.1145/3592533.3592804
https://doi.org/10.1145/3592533.3592804
https://doi.org/10.1145/3468737.3494084
https://doi.org/10.1145/3468737.3494084
https://doi.org/10.23919/DATE51398.2021.9474063
https://doi.org/10.23919/DATE51398.2021.9474063
https://doi.org/10.1016/j.jpdc.2020.01.004
https://doi.org/10.1145/3565384.3565890
https://doi.org/10.1109/SP40000.2020.00055
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://lwn.net/Articles/545745/
https://arxiv.org/abs/2212.08146
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1109/ICESS.2019.8782524
https://doi.org/10.1145/3544216.3544259
https://doi.org/10.1007/978-3-319-49583-5_15


Kernel-as-a-Service: A Serverless Programming Model for Heterogeneous Hardware Accelerators Middleware ’23, December 11–15, 2023, Bologna, Italy

[69] Gourav Rattihalli, Ninad Hogade, Aditya Dhakal, Eitan Frachtenberg,
Rolando Pablo Hong Enriquez, Pedro Bruel, Alok Mishra, and Dejan Milo-
jicic. 2023. Fine-Grained Heterogeneous Execution Framework with Energy
Aware Scheduling. In Proceedings of the 2023 IEEE 16th International Conference
on Cloud Computing (Chicago, IL, USA) (CLOUD ’23). IEEE, New York, NY, USA,
35–44. https://doi.org/10.1109/CLOUD60044.2023.00014

[70] Sebastián Risco and Germán Moltó. 2021. GPU-Enabled Serverless Workflows
for Efficient Multimedia Processing. Journal of Applied Sciences 11, 4 (Feb. 2021),
1438. https://doi.org/10.3390/app11041438

[71] Felix Ritter, Tobias Boskamp, A. Homeyer, Hendrik Laue, Michael Schwier,
Florian Link, and H.-O. Peitgen. 2011. Medical Image Analysis. IEEE Pulse 2, 6
(Dec. 2011), 60–70. https://doi.org/10.1109/MPUL.2011.942929

[72] Andrea Sabbioni, Lorenzo Rosa, Armir Bujari, Luca Foschini, and Antonio
Corradi. 2021. A Shared Memory Approach for Function Chaining in Server-
less Platforms. In Proceedings of the 2021 IEEE Symposium on Computers and
Communications (Athens, Greece) (ISCC ’21). IEEE, New York, NY, USA, 1–6.
https://doi.org/10.1109/ISCC53001.2021.9631385

[73] Marc Sánchez-Artigas and Germán T. Eizaguirre. 2022. A Seer Knows Best:
Optimized Object Storage Shuffling for Serverless Analytics. In Proceedings
of the 23rd ACM/IFIP International Middleware Conference (Quebec City, QC,
Canada) (Middleware ’22). Association for Computing Machinery (ACM), New
York, NY, USA, 148–160. https://doi.org/10.1145/3528535.3565241

[74] Trever Schirmer, Joel Scheuner, Tobias Pfandzelter, and David Bermbach. 2022.
Fusionize: Improving Serverless Application Performance through Feedback-
Driven Function Fusion. In Proceedings of the 10th IEEE International Conference
on Cloud Engineering (Asilomar, CA, USA) (IC2E 2022). IEEE, New York, NY,
USA, 85–95. https://doi.org/10.1109/IC2E55432.2022.00017

[75] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2022. Serverless Com-
puting: A Survey of Opportunities, Challenges, and Applications. Comput.
Surveys 54, 11s (Jan. 2022), 1–32. https://doi.org/10.1145/3510611

[76] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry, Paul
Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and
Ricardo Bianchini. 2020. Serverless in the Wild: Characterizing and Optimizing
the Serverless Workload at a Large Cloud Provider. In Proceedings of the 2020
USENIX Annual Technical Conference (Virtual Event, USA) (ATC ’20). USENIX
Association, Berkeley, CA, USA, 205–218.

[77] John Shalf. 2020. The future of computing beyond Moore’s Law. Philosophical
Transactions of the Royal Society A 378, 2166 (Jan. 2020), 20190061. https:
//doi.org/10.1098/rsta.2019.0061

[78] Prateek Sharma. 2022. Challenges and Opportunities in Sustainable Serverless
Computing. In Proceedings of the 1st Workshop on Sustainable Computer Sys-
tems Design and Implementation (La Jolla, CA, USA) (HotCarbon ’22). USENIX
Association, Berkeley, CA, USA.

[79] Sushant Sharma, Chung-Hsing Hsu, and Wu-chun Feng. 2006. Making a Case
for a Green500 List. In Proceedings of the Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium (Rhodes, Greece) (IPDPS ’06). IEEE,
New York, NY, USA. https://doi.org/10.1109/IPDPS.2006.1639600

[80] Prasoon Sinha, Akhil Guliani, Rutwik Jain, Brandon Tran, Matthew D. Sinclair,
and Shivaram Venkataraman. 2022. Not All GPUs Are Created Equal: Char-
acterizing Variability in Large-Scale, Accelerator-Rich Systems. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis (Dallas, TX, USA) (SC ’22). IEEE, New York, NY, USA, 1–15.
https://doi.org/10.1109/SC41404.2022.00070

[81] Sebastian Thrun. 2007. Simultaneous localization and mapping. In Robotics and
cognitive approaches to spatial mapping. Springer, 13–41.

[82] Paramita Basak Upama, Md Jobair Hossain Faruk, Mohammad Nazim, Moham-
mad Masum, Hossain Shahriar, Gias Uddin, Shabir Barzanjeh, Sheikh Iqbal
Ahamed, and Akond Rahman. 2022. Evolution of Quantum Computing: A
Systematic Survey on the Use of Quantum Computing Tools. In Proceedings
of the 46th Annual Computers, Software, and Applications Conference (Virtual
Event, USA) (COMPSAC ’22). IEEE, New York, NY, USA, 520–529. https:
//doi.org/10.1109/COMPSAC54236.2022.00096

[83] Ava Vali, Sara Comai, and Matteo Matteucci. 2020. Deep Learning for Land
Use and Land Cover Classification Based on Hyperspectral and Multispectral
Earth Observation Data: A Review. Remote Sensing 12, 15 (Aug. 2020), 2495.
https://doi.org/10.3390/rs12152495

[84] Blesson Varghese and Rajkumar Buyya. 2018. Next generation cloud computing:
New trends and research directions. Future Generation Computer Systems 79
(Feb. 2018), 849–861. https://doi.org/10.1016/j.future.2017.09.020

[85] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba
Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast Provisioning of

Custom Serverless Container Runtimes at Alibaba Cloud Function Compute.
In Proceedings of the 2021 USENIX Annual Technical Conference (Virtual Event,
USA) (ATC ’21). USENIX Association, Berkeley, CA, USA, 443–457.

[86] MinjieWang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. (Sept. 2019). arXiv:1909.01315

[87] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and
Minyi Guo. 2015. Simultaneous Multikernel: Fine-Grained Sharing of GPUs.
IEEE Computer Architecture Letters 15, 2 (Sept. 2015), 113–116. https://doi.org/
10.1109/LCA.2015.2477405

[88] Logan Ward, Ganesh Sivaraman, J. Gregory Pauloski, Yadu Babuji, Ryan Chard,
Naveen Dandu, Paul C. Redfern, Rajeev S. Assary, Kyle Chard, Larry A. Curtiss,
Rajeev Thakur, and Ian Foster. 2021. Colmena: Scalable Machine-Learning-
Based Steering of Ensemble Simulations for High Performance Computing.
In Proceedings of the 2021 IEEE/ACM Workshop on Machine Learning in High
Performance Computing Environments (St. Louis, MO, USA) (MLHPC ’21). IEEE,
New York, NY, USA, 9–20. https://doi.org/10.1109/MLHPC54614.2021.00007

[89] Stefan Weinzierl. 2000. Introduction to Monte Carlo methods. (June 2000).
arXiv:hep-ph/0006269

[90] SebastianWerner and Trever Schirmer. 2022. Hardless: A Generalized Serverless
Compute Architecture for Hardware Processing Accelerators. In Proceedings
of the 10th IEEE International Conference on Cloud Engineering (Asilomar, CA,
USA) (IC2E 2022). IEEE, New York, NY, USA, 79–84. https://doi.org/10.1109/
IC2E55432.2022.00016

[91] Robert Wille, Rod Van Meter, and Yehuda Naveh. 2019. IBM’s Qiskit tool chain:
Working with and developing for real quantum computers. In Proceedings of
the 2019 Design, Automation & Test in Europe Conference & Exhibition (Florence,
Italy) (DATE ’19). IEEE, New York, NY, USA, 1234–1240. https://doi.org/10.
23919/DATE.2019.8715261

[92] BoWu, Xu Liu, Xiaobo Zhou, and Changjun Jiang. 2017. FLEP: Enabling Flexible
and Efficient Preemption on GPUs. ACM SIGPLAN Notices 52, 4 (April 2017),
483–496. https://doi.org/10.1145/3093336.3037742

[93] Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf Eigenmann, and Timo-
thy G. Rogers. 2017. Pagoda: Fine-Grained GPU Resource Virtualization for
Narrow Tasks. ACM SIGPLAN Notices 52, 8 (Aug. 2017), 221–234. https:
//doi.org/10.1145/3155284.3018754

[94] Mohamed Zahran. 2016. Heterogeneous Computing: Here to Stay: Hardware
and Software Perspectives. Queue 14, 6 (Nov. 2016), 31–42. https://doi.org/10.
1145/3028687.3038873

[95] Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the Cloud. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20).
Association for Computing Machinery (ACM), New York, NY, USA, 845–858.
https://doi.org/10.1145/3373376.3378491

[96] Peng Zhang, Jianbin Fang, Canqun Yang, Chun Huang, Tao Tang, and Zheng
Wang. 2020. Optimizing Streaming Parallelism on Heterogeneous Many-Core
Architectures. IEEE Transactions on Parallel and Distributed Systems 31, 8 (March
2020), 1878–1896. https://doi.org/10.1109/TPDS.2020.2978045

[97] Wei Zhang, Quan Chen, Ningxin Zheng, Weihao Cui, Kaihua Fu, and Minyi Guo.
2021. Toward QoS-Awareness and Improved Utilization of Spatial Multitasking
GPUs. IEEE Trans. Comput. 71, 4 (March 2021), 866–879. https://doi.org/10.
1109/TC.2021.3064352

[98] Chen Zhao, Wu Gao, Feiping Nie, and Huiyang Zhou. 2021. A Survey of GPU
Multitasking Methods Supported by Hardware Architecture. Transactions on
Parallel and Distributed Systems 33, 6 (Sept. 2021), 1451–1463. https://doi.org/
10.1109/TPDS.2021.3115630

[99] Haidong Zhao, Zakaria Benomar, Tobias Pfandzelter, and Nikolaos Georgantas.
2022. SupportingMulti-Cloud in Serverless Computing. In Proceedings of the 15th
IEEE/ACM International Conference on Utility and Cloud Computing Companion
(Vancouver, WA, USA) (UCC ’22). IEEE, New York, NY, USA, 285–290. https:
//doi.org/10.1109/UCC56403.2022.00051

[100] Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou, and Keqiu Li. 2021. Un-
derstanding, Predicting and Scheduling Serverless Workloads under Partial
Interference. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (St. Louis, MO, USA) (SC
’21). Association for Computing Machinery (ACM), New York, NY, USA, 1–15.
https://doi.org/10.1145/3458817.3476215

Received 2022-12-02; revised 2023-06-02; accepted 2023-10-13

https://doi.org/10.1109/CLOUD60044.2023.00014
https://doi.org/10.3390/app11041438
https://doi.org/10.1109/MPUL.2011.942929
https://doi.org/10.1109/ISCC53001.2021.9631385
https://doi.org/10.1145/3528535.3565241
https://doi.org/10.1109/IC2E55432.2022.00017
https://doi.org/10.1145/3510611
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1109/IPDPS.2006.1639600
https://doi.org/10.1109/SC41404.2022.00070
https://doi.org/10.1109/COMPSAC54236.2022.00096
https://doi.org/10.1109/COMPSAC54236.2022.00096
https://doi.org/10.3390/rs12152495
https://doi.org/10.1016/j.future.2017.09.020
https://arxiv.org/abs/1909.01315
https://doi.org/10.1109/LCA.2015.2477405
https://doi.org/10.1109/LCA.2015.2477405
https://doi.org/10.1109/MLHPC54614.2021.00007
https://arxiv.org/abs/hep-ph/0006269
https://doi.org/10.1109/IC2E55432.2022.00016
https://doi.org/10.1109/IC2E55432.2022.00016
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.23919/DATE.2019.8715261
https://doi.org/10.1145/3093336.3037742
https://doi.org/10.1145/3155284.3018754
https://doi.org/10.1145/3155284.3018754
https://doi.org/10.1145/3028687.3038873
https://doi.org/10.1145/3028687.3038873
https://doi.org/10.1145/3373376.3378491
https://doi.org/10.1109/TPDS.2020.2978045
https://doi.org/10.1109/TC.2021.3064352
https://doi.org/10.1109/TC.2021.3064352
https://doi.org/10.1109/TPDS.2021.3115630
https://doi.org/10.1109/TPDS.2021.3115630
https://doi.org/10.1109/UCC56403.2022.00051
https://doi.org/10.1109/UCC56403.2022.00051
https://doi.org/10.1145/3458817.3476215

	Abstract
	1 Introduction
	2 Background
	3 Kernel-as-a-Service Design
	3.1 Overview
	3.2 Performance
	3.3 Efficiency
	3.4 Usability

	4 Prototype Implementation
	4.1 Components
	4.2 Accelerators

	5 Evaluation
	5.1 Performance
	5.2 Energy Efficiency
	5.3 Transparent Remote Invocation
	5.4 Scalability
	5.5 Autoscaling
	5.6 Heterogeneity

	6 Discussion & Future Work
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

