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Abstract—Fog systems rely on centralized and strongly consis-
tent services for configuration management originally designed
for cloud systems. Considering geo-distribution, such systems can
exhibit high communication latency or become unavailable in
case of network partition. In this paper, we examine the draw-
backs of strong consistency for fog configuration management
and propose an alternative based on CRDTs. We prototypically
implement our approach for the FReD fog data management
platform with promising early results.

I. INTRODUCTION

Fog computing combines geo-distributed servers at the
edge, in the cloud, and in the core network to support novel
application domains such as the IoT [1], [2]. Fog platforms,
e.g., FogStore [3] and FReD [4], use centralized configuration
management systems with strong consistency. While desirable
for easier configuration of replicas and availability clusters,
this comes with an inherent performance penalty [5], [6] that
is exacerbated in fog systems, which are highly geo-distributed
with connections over the unreliable Internet.

Eventual consistency could enable distributed configuration
management with low latency and high availability [5]. In this
paper, we explore the QoS benefits of this approach and show
drawbacks of eventual consistency in fog configuration man-
agement. We develop an alternative distributed configuration
management system with eventual consistency for the fog data
management platform FReD. We convert existing methods and
data fields to use conflict-free replicated data types (CRDTs)
that allow resolving consistency conflicts after they occur due
to network partitions or delay [7], [8].

We make the following contributions:1

• We design an eventually consistent configuration man-
agement architecture for the FReD fog data management
platform based on CRDTs (Section II).

• We prototypically implement this design and evaluate it
experimentally (Section III).

II. CRDT-BASED CONFIGURATION IN FRED

In FReD, clients read and write data to keygroups, logically
coherent data tables that can be accessed by application with
a key/value interface and replicated to geographically diverse
locations. As a central source of truth about the available FReD
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1An extended version of this paper is available as technical report [9].

locations, replication instructions, and user authentication,
the FReD naming service runs a centralized etcd cluster
in the cloud. We propose replacing this centralized naming
service with a decentralized CRDT-based approach with the
goal of improving client access latency and network partition
tolerance. This is especially relevant as reading configuration
data is on the hot path of a client request to FReD: When a
client reads data from a FReD node, the node has to check that
the client is allowed to perform this read. Similarly, when an
update request occurs, the FReD node has to read keygroup
configuration that specifies to which other nodes in the fog
network data should be replicated.

We use Last-Write-Wins element set (LWW), a state-based
CRDT [7], to hold configuration data in our eventually con-
sistent configuration service. Specifically, we use one set
each for node information, keygroup configuration, system
permission, and FReD node organization. We use a distributed
bootstrapping approach where new nodes are informed of one
existing node to create an overlay network. We use a gossip-
style message dissemination where nodes periodically call
other nodes to update their view of the network and discover
unavailable nodes. We convert the following functionality of
the FReD naming service:

Node Registration: Instead of registering a new node with a
central orchestrator, node identifier and address are sent to the
bootstrapping node. As node creation happens infrequently and
identifiers can easily be made unique, this is unlikely to lead
to incorrect behavior. In case of a restart after failure LWW
ensures that outdated information about a node is overwritten.

User Permission Changes: When an administrator makes
permission changes for a user at the user’s node, this node will
immediately apply those changes. If message dissemination
is slower than user movement, data staleness could lead to
user permissions being outdated when switching nodes. The
correlation between physical locations of users and nodes, and
the data dissemination latency, however, makes this unlikely.
Partitioned nodes are a challenge, as updated permission
information cannot reach them. The only alternative to stale
information is unavailability of the node, e.g., by disabling
access for users when the partition is detected.

Keygroup Modification: Identifier uniqueness is paramount
in creating keygroups. Concurrent creation of keygroups with
identical names at two different nodes will lead to conflicts in
LWW, yet the large identifier space makes this unlikely.
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Fig. 1: FReD response times without network delays between
configuration service machines using etcd and CRDTs.
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Fig. 2: FReD response times with 10ms delays between
configuration service machines using etcd and CRDTs.

Keygroup Membership: Administrators and application can
join and remove nodes from keygroups to specify data repli-
cation. Conflicts in eventually consistent configuration could
occur only for changes made to the same keygroup, as mem-
berships to keygroups is independent. If keygroup membership
for a single node is modified concurrently, one of these
changes is overwritten by LWW. This is unlikely, however,
as each keygroup is managed by a single application.

III. EVALUATION

We implement our CRDT-based service using Go and
gRPC, making it compatible with FReD. In our experiments,
we start FReD nodes as containers and compare the original
etcd naming service implementation and our new CRDT-
based system. Each naming service is distributed over at least
three machines. We inject artificial network delays between
nodes using tc-netem. A load generator connected to a
FReD node measures request completion times.

Baseline: As a baseline, we compare configuration man-
agement approaches without network delay. To invoke write
access to the naming service call the createKeygroup API
of FReD to create keygroups from our load generator. The
results in Fig. 1 show a higher delay for the etcd naming
service. Although we expect this improvement to be caused
mainly by the switch to a CRDT-based approach, we cannot
rule out that our prototypical implementation is otherwise
more efficient than production-ready etcd.

With Network Delays: Using an artificial network delay
of 10ms, we evaluate the impact of communication delay
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Fig. 3: FReD response times with configuration service ma-
chines using etcd and CRDTs. After 45s experiment time, we
partition the network between configuration service machines.

between naming service machines. As shown in Fig. 2, this
small communication delay increases FReD response times
for both implementations. However, the total impact is more
noticeable for the etcd naming service.

Network Partitions: After running the experiment for 45
seconds, we introduce a network partition between the naming
service machine used by our FReD node and the two others.
We re-enable the network link after a further 35 seconds.
As shown in Fig. 3, the partition impacts only the strongly
consistent etcd implementation, where all requests fail during
the partition (shown as a 0ms response time). Note also that
it takes an additional 20 seconds after the network links
are re-enabled for the system to recover. The CRDT-based
implementation remains unaffected by this partition.

IV. FUTURE WORK

Future work will include a more comprehensive evaluation
of the drawbacks of using eventually consistent configuration
management in the fog. We also plan to explore the combi-
nation of strong consistency for some configuration data and
eventual consistency for others. While complex, such a hybrid
approach would allow for more efficient data dissemination
without impacting application logic.
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