
Evaluating LEO Edge Software in
the Cloud with CELESTIAL

Tobias Pfandzelter, David Bermbach
Technische Universität Berlin & Einstein Center Digital Future

Mobile Cloud Computing Research Group
{tp,db}@mcc.tu-berlin.de

Abstract—CELESTIAL is a toolkit for building LEO edge
testbeds on cloud VMs. This allows testing and benchmarking
LEO edge software systems such as applications and platforms
without access to real LEO satellite infrastructure. CELESTIAL
scales to emulate thousands of satellites servers on few cloud
VMs using microVM technology. Its low footprint makes it
cost-efficient for research and educational purposes without
sacrificing flexibility and isolation. We show considerations for
designing LEO edge software and demonstrate evaluating it on
a CELESTIAL testbed.

Index Terms—leo edge, edge testbed, software evaluation

I. INTRODUCTION

Low-Earth orbit (LEO) satellite constellations will provide
high-bandwidth broadband Internet access to a global sub-
scriber base [1], [2]. These constellations comprise thousands
of satellites orbiting Earth at high speeds, as shown in Fig. 1.
Researchers have proposed integrating edge computing with
LEO networks by deploying servers onto communication
satellites in order to enable in-network data processing with
low latency for a new class of Internet user [3]–[5].

While it can take many years and significant research
and industry investment until the LEO edge becomes widely
available, we must already evaluate if and how it may be used
to support edge applications. To that end, we need virtual
testbeds that allow us to test real software systems in a
scalable manner with cost-efficient cloud resources.

II. CELESTIAL OVERVIEW

CELESTIAL is an open-source toolkit for running virtual
LEO edge testbeds in the cloud [6], [7]. At its core is a
coordinator that accurately simulates the satellite network
and calculates machine positions and network characteristics.
Host cloud VMs run low-footprint Firecracker microVMs [8]
to emulate each satellite server and ground station. This
allows emulating limited resources with more isolation than
containers yet lower resource requirements than full VMs.
Concurrently emulating hundreds of satellites on a single
cloud VM is easily possibly and, if needed, emulation can
scale out across multiple cloud VMs. CELESTIAL employs
low-overhead eBPF-based network emulation to efficiently
inject artificial delays and bandwidth limitation between satel-
lites [9]. Software running in a CELESTIAL testbed can use
an API to retrieve current constellation information in order
to optimize for satellite server location or network capacity.

Fig. 1. The proposed Amazon Project Kuiper constellation comprises 3,236
satellites in three different orbits (orange, green, blue) [2]. A ground station
in Boston, MA, USA and its uplink connections are shown in light green.

Users start CELESTIAL hosts as cloud VMs and pro-
vide simulation parameters and machine images for satel-
lite servers. Simulation parameters include constellation de-
sign, satellite server hardware capabilities, and ground station
location. CELESTIAL can generate animations to visualize
characteristics for users. Machine images are full microVM
disk images generated from a chosen Linux base system
and application files. CELESTIAL includes tooling to generate
such images from existing files, but users may choose, e.g.,
to enable additional Linux kernel features. This also allows
flexibility and support for a wide array of software, including
running container engines within CELESTIAL servers.

Finally, users can also provide a bounding box that limits
emulation to a specified geographical area, as edge software is
often only relevant for a single location. Instead of emulating
thousands of satellite servers at the same time, only satellites
that currently move over that location are started for software
system evaluation, saving resources. LEO satellite mobility
requires frequently starting and suspending servers as they
move in and out of the bounding box, which CELESTIAL does
automatically.

III. LEO EDGE SOFTWARE DESIGN

The key differences between terrestrial and LEO edge com-
puting for software system design are scale and mobility [5].

Scale: LEO edge software systems must efficiently scale
across thousands of identical compute nodes, i.e., the satellite
servers. While LEO edge software can leverage the powerful
satellite network for communication among nodes, it should



limit such communication in order to save costs and resources.
Ideally, individual services are stateless in order to limit
communication overhead needed for synchronization [5]. If
necessary, a smaller number stateful nodes could be evenly
distributed within the network [10].

Mobility: As a result of their low orbit, LEO satellites
travel at high speeds in relation to Earth, e.g., 27,000km/h
at 550km altitude [3]. A satellite flying over one geographic
area can be on the other side of Earth within 30 minutes. This
also means that ground stations on Earth change their uplink
satellites frequently, on the order of minutes. LEO edge ap-
plication services serving a specific geographic location have
to anticipate and counteract this mobility, e.g., by frequently
reading the state of the LEO constellation. When software is
deployed in containers, those containers have to be migrated
proactively between satellite servers. For stateless software,
where multiple replicas can exist without conflicts, additional
service copies can be started on other satellite servers that will
reach the served location in the near future.

IV. USING CELESTIAL

CELESTIAL allows evaluating both mobility support and
scalability of LEO edge software systems. A software system
evaluation on CELESTIAL encompasses the following tasks:

1) Planning: Evaluating software system requires defining
quality metrics and evaluation scenarios, which have to be
implemented with software deployment methods and load
generators. While CELESTIAL is merely a testbed and does
not provide load generation tools, it is designed for broad
compatibility by using Linux VMs.

2) Integration: CELESTIAL provides APIs for reading the
state of the emulated satellite constellation. Application need
to integrate these APIs if this information is necessary, e.g.,
through a middleware.

3) Building Artifacts: Firecracker microVM images are
necessary to run software on CELESTIAL. Building these
images requires software installation scripts that can be ex-
ecuted with our tooling. Further, the tested scenario has to be
implemented in a CELESTIAL configuration file, specifying,
e.g., constellation parameters and ground station location.

4) Infrastructure Setup: To run a testbed, first start the
necessary infrastructure. We show an example cloud con-
figuration in Fig. 2: A coordinator server runs the network
simulation and sends instructions to host servers running
the celestial.bin host-side service. MicroVMs are dis-
tributed across two cloud hosts, where CELESTIAL configures
Firecracker and the network plane according to characteristics
determined in live simulation.

5) Execution: Software execution begins as soon as CE-
LESTIAL is started and microVMs boot. While the evaluation
is running, read-only access to microVM disk images and
output is possible to monitor progress. Ending the emulation
run also destroys all running microVMs.

6) Result Collection: Results can be collected from mi-
croVM disk images and terminal output at the end of the
simulation. For example, a load generator may log service

Cloud Host 1

Coordinator

Celestial Coordinator

celestial.bin

Firecracker

celestial.bin

Firecracker

Cloud
Local Machine

Network Plane

G
rp

un
ds

ta
tio

n

Sa
te

lli
te

 
Se

rv
er

Sa
te

lli
te

 
Se

rv
er

Sa
te

lli
te

 
Se

rv
er

Sa
te

lli
te

 
Se

rv
er

Sa
te

lli
te

 
Se

rv
er

Sa
te

lli
te

 
Se

rv
er

Sa
te

lli
te

 
Se

rv
er… …

Cloud Host 2

D
oc

ke
r

Fig. 2. Overview of a CELESTIAL testbed in the cloud: a coordinator runs
the network simulation and instructs the machines that host the celestial
microVMs. On those hosts, a celestial.bin server configures Firecracker
and the network plane accordingly.

access latency to a local file that can be copied from the
CELESTIAL host.

7) Result Analysis: Finally, results can be analyzed using
any suitable methodology. When evaluation service quality it
is useful to compare results to the changing network character-
istics of the LEO constellation in order to determine whether,
e.g., access latency was caused by the service or the network.

V. CONCLUSION & GETTING STARTED

CELESTIAL is an open-source tool for evaluating LEO edge
software systems with cost-efficient, scalable testbeds in the
cloud. We provide extensive documentation online, including
a quick start guide: https://openfogstack.github.io/celestial.

REFERENCES

[1] D. Bhattacherjee, W. Aqeel, I. N. Bozkurt, A. Aguirre, B. Chan-
drasekaran, B. P. Godfrey, G. Laughlin, B. Maggs, and A. Singla,
“Gearing up for the 21st century space race,” in Proc. HotNets ’18,
Nov. 2018, pp. 113–119.

[2] S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre, and A. Singla,
“Exploring the “internet from space” with hypatia,” in Proc. IMC ’20,
Oct. 2020, pp. 214–229.

[3] D. Bhattacherjee and A. Singla, “Network topology design at 27,000
km/hour,” in Proc. CoNEXT ’19, Dec. 2019, pp. 341–354.

[4] T. Pfandzelter and D. Bermbach, “Edge (of the earth) replication: Opti-
mizing content delivery in large leo satellite communication networks,”
in Proc. CCGrid ’21, May 2021, pp. 565–575.

[5] T. Pfandzelter, J. Hasenburg, and D. Bermbach, “Towards a computing
platform for the leo edge,” in Proc. EdgeSys ’21, Apr. 2021, pp. 43–48.

[6] T. Pfandzelter and D. Bermbach, “Celestial: Virtual software system
testbeds for the leo edge,” in Proc. MIDDLEWARE ’22, Nov. 2022, pp.
69–81.

[7] ——, “Testing leo edge software systems with CELESTIAL,” TU
Berlin & ECDF, Mobile Cloud Computing Research Group, Tech. Rep.
MCC.2022.1, Apr. 2022.

[8] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in Proc. OSDI ’20, 2020, pp. 419–434.

[9] S. Becker, T. P. Pfandzelter, N. Japke, D. Bermbach, and O. Kao,
“Network emulation in large-scale virtual edge testbeds: A note of
caution and the way forward,” in Proc. TDIS ’22, Sep. 2022, pp. 1–
7.

[10] T. Pfandzelter and D. Bermbach, “Qos-aware resource placement for leo
satellite edge computing,” in Proc. ICFEC ’22, May 2022, pp. 66–72.

https://openfogstack.github.io/celestial

	Introduction
	Celestial Overview
	LEO Edge Software Design
	Using Celestial
	Planning
	Integration
	Building Artifacts
	Infrastructure Setup
	Execution
	Result Collection
	Result Analysis


	Conclusion & Getting Started
	References

