

Technical Report
No. MCC.2022.1

Cite this report as:
Tobias Pfandzelter, David Bermbach Testing LEO Edge Software Systems with Celestial.
Technical Report MCC.2022.1. TU Berlin & ECDF, Mobile Cloud Computing Research
Group, 2022.

Abstract:
LEO satellite constellations to provide global broadband Internet access, researchers have
proposed to embed compute services within satellite constellations to provide computing
services on the LEO edge. While the LEO edge is merely theoretical at the moment, providers
are expected to rapidly develop their satellite technologies to keep the upper hand in the new
space race.

In this paper, we answer the question of how researchers can explore the possibilities of LEO
edge computing and evaluate arbitrary software systems in an accurate runtime environment
and with cost-efficient scalability. To that end, we present CELESTIAL, a virtual testbed for the
LEO edge based on microVMs. CELESTIAL can efficiently emulate individual satellites and their
movement as well as ground station servers with realistic network conditions and in an
application-agnostic manner, which we show empirically. Additionally, we explore opportunities
and implications of deploying a real-time remote sensing application and a web application on
LEO edge infrastructure in two case studies on CELESTIAL.

Testing LEO Edge Software Systems with Celestial∗

Tobias Pfandzelter
TU Berlin & ECDF

Mobile Cloud Computing Research Group
Berlin, Germany

tp@mcc.tu-berlin.de

David Bermbach
TU Berlin & ECDF

Mobile Cloud Computing Research Group
Berlin, Germany

db@mcc.tu-berlin.de

ABSTRACT
As private space companies such as SpaceX and Telesat are build-
ing large LEO satellite constellations to provide global broadband
Internet access, researchers have proposed to embed compute ser-
vices within satellite constellations to provide computing services
on the LEO edge. While the LEO edge is merely theoretical at the
moment, providers are expected to rapidly develop their satellite
technologies to keep the upper hand in the new space race.

In this paper, we answer the question of how researchers can
explore the possibilities of LEO edge computing and evaluate ar-
bitrary software systems in an accurate runtime environment and
with cost-efficient scalability. To that end, we present Celestial,
a virtual testbed for the LEO edge based on microVMs. Celestial
can efficiently emulate individual satellites and their movement as
well as ground station servers with realistic network conditions
and in an application-agnostic manner, which we show empirically.
Additionally, we explore opportunities and implications of deploy-
ing a real-time remote sensing application and a web application
on LEO edge infrastructure in two case studies on Celestial.

1 INTRODUCTION
Private aerospace and Internet companies, such as SpaceX1, OneWeb2,
and Telesat3, are launching tens of thousands of satellites to provide
global broadband Internet access. Thanks to their low-Earth orbit
(LEO) and free-space laser links, consumers can expect low-latency,
high-bandwidth Internet access anywhere on Earth. New LEO satel-
lite networks challenge not only the old satellite-based Internet
access but terrestrial fiber as well [8, 58, 60].

Fueled by that development, it has also been proposed to im-
plement computing resources within these LEO constellations,
e.g., [9, 57, 70], to facilitate LEO edge computing, as is common
with terrestrial multi-access edge computing (MEC) [23]. Edge re-
sources located on communication satellites, which act as radio
uplinks for LEO Internet subscribers, could provide low-latency
application access from which especially rural areas and clients
without a nearby cloud data center would benefit [9, 11, 54, 57].

LEO edge computing introduces novel challenges in application
management: The number of potential satellite servers, with, e.g.,
the proposed Starlink constellation comprising more than 40,000
satellites at completion [31, 32, 43], will require new approaches
to server management. Further, LEO satellites move at speeds in
excess of 27,000km/h and ground equipment frequently needs to

∗This technical report extends a paper that has been published at the 23rd International
Middleware Conference [55]. The main extension is an additional case study with a
web application.
1https://www.starlink.com/
2https://www.oneweb.world/
3https://www.telesat.com/

reconnect to new satellites, resulting in an ever-changing network
topology. Finally, LEO edge software is subject to constrained com-
pute resources and the harsh environment of space.

To solve these challenges, researchers will need to develop new
middleware systems for application state management, request
routing, and service offloading. As LEO edge computing currently
exists only as a concept and any actual infrastructure is years away
from implementation, emulated testbeds are needed to go beyond
the capabilities of simulation and to actually test and benchmark
such middleware prototypes. Emulating LEO edge infrastructure in
the cloud, however, is non-trivial, as the number of satellite servers
raises scalability and cost concerns, and the highly dynamic satellite
network and environmental effects must be accurately reflected in
the testbed.

In this paper, we thus raise the question of how we can evaluate
arbitrary software systems for the LEO edge as accurately as possible
and in a cost-efficient manner. To answer this question, we make
the following contributions:

• We present LEO edge computing and the challenges of
building and evaluating LEO edge software without access
to actual infrastructure (§2).

• We introduce Celestial, a novel LEO edge emulation tool
based on microVMs and discuss how it addresses these
challenges (§3).

• We evaluate these claims by deploying a latency-sensitive
edge application on Celestial (§4).

• In a case study on Celestial, we evaluate different deploy-
ments of a distributed real-time data analysis service in
the context of remote sensor networks to assess the op-
portunities and implications of the LEO edge environment
(§5).

• In a further case study, we evaluate different deployments
of a distributed web application to assess the implications
of the LEO edge environment (Section 6).

• We discuss threats to validity for our work and derive av-
enues for future work on Celestial and the LEO edge (§7).

We make our implementation of Celestial available as open-
source4 to help future researchers validate their own applications
and platforms. Our hope is that this will make the field of LEO edge
computing more accessible and provide a starting point for systems
research in this area.

2 BACKGROUND & RELATEDWORK
In this section, we give an overview of the state of the art in large
LEO satellite communication networks and describe the opportu-
nities and challenges of the novel LEO edge computing paradigm.

4https://github.com/OpenFogStack/celestial

https://www.starlink.com/
https://www.oneweb.world/
https://www.telesat.com/
https://github.com/OpenFogStack/celestial

Tobias Pfandzelter and David Bermbach

Furthermore, we discuss what it takes to build and test LEO edge
software systems without access to LEO edge infrastructure, and
where current simulators and testbeds fall short.

2.1 Large LEO Satellite Communication
Networks

Satellite Internet access using geostationary orbits at altitudes in
excess of 35,000km have been in operation for decades. Yet, their
high communication delays and low bandwidth make them in-
feasible for most applications [15]. Advances in radio and laser
technology [44], and progressively lower satellite launch costs in
the last few years [42], have now enabled private companies such as
SpaceX, Telesat, OneWeb, and Amazon to deploy high-bandwidth,
low-latency satellite communication networks using thousands of
satellites at altitudes between 500 and 1,500km, called the low-Earth
orbit (LEO). Rather than only relaying radio signals from ground
stations, these new satellites can use inter-satellite laser links (ISL)
for communication between adjacent satellites. Given the vacuum
in space, these ISLs can benefit from a ∼47% faster light propagation
than in fiber cables [10, 31]. Point-to-point communication between
two ground stations over the satellite network can thus incur less
communication delay than with terrestrial fiber connections. As
installing user equipment is also cheaper than installing fiber optic
cables, the new large LEO satellite communication networks are
expected to challenge not only traditional satellite Internet access
but also terrestrial fiber [8, 10].

The core of a LEO satellite communication network is the ac-
tual satellite constellation. Such a constellation comprises shells of
satellites, each shell at a different altitude and with different orbital
parameters. Each of these shells consists of a number of orbital
planes, evenly spaced around the equator. Within each plane are
satellites that follow the same orbit, evenly spaced around that
plane [56, 67].

Figure 1 shows an overview of the satellites in the planned phase
I Starlink constellation, which comprises five such shells. The first
shell has 1,584 satellites at altitudes of 550km and is split into 72
planes of 22 satellites each. Each of these orbital planes is inclined at
an angle of 53° to the Earth’s equatorial plane. Additional shells at
higher altitudes provide greater areas of coverage at the expense of
additional network delay [31, 43]. The ISLs of such a constellation
are likely to be arranged in a +GRID pattern, where each satellite
keeps a link to its predecessor and successor within its plane as
well as to one neighbor each in the two closest adjacent planes.
This allows any two ground stations to connect directly to each
other over the satellite network [10].

2.2 Bringing Compute to the LEO Edge
The edge computing paradigm is the answer to a growing demand
and need to process data close to its origin rather than in distant
cloud data centers [7, 69]. In fog computing [12] and the terrestrial
MEC architecture [23], compute resources are embedded within the
access network, i.e., close to clients, the network edge. Here, edge
applications run on virtualization infrastructure, which makes them
available with high bandwidth and low latency, with lower network
costs, and with decreased privacy and security risks [52, 61].

Figure 1: Overview of the planned phase I Starlink constella-
tion with five shells of 1,584 satellites at 550km (turquoise),
1,600 at 1110km (orange), 400 at 1130km (blue), 375 at 1275km
(pink), and 450 at 1325km (green) altitude. Colored lines il-
lustrate ISLs, bright green lines show possible ground-to-
satellite links for a ground station [43].

In large LEO satellite communication networks, the network
edge is the satellite constellation itself – the last provider-operated
hop before packets reach user equipment. Uplinks for groups of
ground stations converge in a satellite, making it an efficient loca-
tion for shared computing resources close to clients [54]. Possible
applications for LEO edge computing include CDN replication to re-
duce bandwidth usage in the network and access latency for clients,
meetup servers for multi-user interaction such as low-latency gam-
ing or video conferencing, or processing space-native data [9, 11, 54]
– a detailed overview of the architecture of such an application is
given in our case-study in §5. Given the current skew of cloud and
cloudlet data centers being placed close to metropolitan areas, LEO
edge computing could help meet the needs of rural areas through
the global coverage of LEO satellite networks.

A number of challenges still lie ahead on the path to global LEO
edge computing: First, satellite constellations themselves are still
being built out and do not yet provide uninterrupted global cover-
age. As a result, there are no system traces from real world LEO
satellite constellations. Second, none of the communication satel-
lites that are already in operation at the moment provide sufficient
additional compute resources that could be sold to customers, as
satellites are limited by payload restrictions and launch costs. Al-
though multi-tenant satellites, e.g., the F6 fractionated satellite [14]
or the Tiansuan satellites [68], have been researched, to the best
of our knowledge, no operational compute platform for LEO satel-
lite networks exists at the moment. Third, the deployment and

Testing LEO Edge Software Systems with Celestial

operation of such resources in LEO introduce additional engineer-
ing challenges in power consumption, waste-heat management, or
radiation hardening [9, 51, 66]. Fourth, how to abstract from the
highly mobile and unique infrastructure using LEO edge computing
platforms is still actively being researched, e.g., [11, 57].

2.3 Open Challenges in Building and Testing
LEO Edge Software Systems on Earth

A key part of systems research for the LEO edge is the evaluation of
software systems in a realistic environment, e.g., through functional
testing and benchmarking. While algorithms can be evaluated in
simulation, studying the behavior of concrete software systems
requires a realistic runtime environment. We believe that enabling
researchers and practitioners to quickly and affordably run virtual
LEO edge computing infrastructure in the cloud will accelerate both
systems research and the actual development and deployment of
infrastructure as operators gauge industry and research interest. Yet,
building such testbeds for large-scale, highly dynamic infrastructure
requires addressing three specific research challenges: How can we
ensure that a testbed offers an accurate representation of real LEO
constellations? Which abstractions are necessary in the design of a
testbed so that arbitrary software systems can be deployed on it?
Finally, how can we achieve this with cost-efficiency at scale?

Accurate Emulation of LEO Constellations. A fundamental dif-
ference of the LEO edge compared to terrestrial edge or cloud
computing is the high mobility of satellites in relation to Earth that
result from their low orbits. A complete LEO edge infrastructure is
constantly evolving, with network connections and characteristics
between servers changing by the second. Furthermore, ground sta-
tions also frequently switch their uplink to their closest satellite as
a result of this mobility. All applications and platforms developed
for the LEO edge need to consider this and proactively replicate
data and services. These characteristics of the network influence
the performance of edge applications, which are often latency or
bandwidth sensitive, and must thus also be part of a LEO edge com-
puting testbed. This should be based on detailed models of Earth
and space so that hand-off and data migration techniques can be
evaluated as accurately as possible.

Satellite servers will likely use commercial, off-the-shelf com-
pute hardware, e.g., as HPE does with their Spaceborne Computers
onboard the International Space Station [22, 63]. Although the ef-
fects of the Van Allen radiation belts are negligible in lower orbits,
servers will be subject to some single event upsets caused by in-
termittent galactic cosmic rays that can normally be absorbed by
Earth’s atmosphere and magnetic field [46]. HPE has shown that
this can be remediated with standard software and hardware mech-
anisms, yet at the cost of temporary performance degradation or
full shutdowns. Such failure will impact any software running on a
satellite and developers will want to test their applications against
these scenarios. Especially service orchestrators on top of LEO edge
infrastructure need to adapt and react quickly.

Support for Arbitrary Software Systems. A LEO edge computing
testbed should enable development and evaluation of any kind of
LEO edge software and should not be restricted to certain program-
ming languages, frameworks, or deployment models. The emulator

should thus accurately reflect blank-slate servers, especially as we
still face unknowns regarding middleware platforms and applica-
tions.

When considering the development of platforms, great care
should be taken to ensure that a virtual testbed does not impose re-
strictions on the kind of technologies that can be evaluated within,
e.g., a container-based approach where each satellite server is emu-
lated with a single container would impose limitations on testing
container-based platforms.

Cost-Efficient Scalability. Large LEO satellite constellations can
comprise tens of thousands of satellites and serve millions of clients.
Building and scaling applications and platforms for such infrastruc-
ture is a difficult challenge and a LEO edge testbed should be able
to serve as a way to perform scalability evaluation. The testbed
must thus also scale for large constellations and provide the means
to emulate such infrastructure.

However, users should not be expected to also provide tens of
thousands of physical computers for such an emulation. Rather,
the testbed should be cost-efficient in a way where more than one
satellite server can be emulated on one host. Further, it should also
let the user evaluate only a part of the complete constellation, e.g.,
to support rapid prototyping and testing of a constellation subset
over a certain geographical area or to save experiment costs.

2.4 Related Work
In the edge computing, where applications are widely distributed
and physical infrastructure is often inaccessible, researchers com-
monly rely on virtual testbeds, network simulators, and edge simu-
lators for testing.

Testbed tools such as Fogbed [17], EmuFog [49], or MockFog [33,
34] allow users to create and manipulate virtual infrastructure that
mimics a distributed, heterogeneous edge-cloud continuum. Fogbed
and EmuFog, however, do not support an emulation of highly dy-
namic network topologies as required for large LEO satellite con-
stellations. Furthermore, applications are deployed as Docker con-
tainers, which makes it unsuitable for evaluating novel platforms
as it limits supported software. MockFog supports dynamic net-
work changes and uses a dedicated cloud virtual machine for each
compute node, which imposes fewer restrictions on the kinds of
software it supports, yet such flexibility comes at a price: With a
dedicated cloud virtual machine for each satellite server, we cannot
achieve a cost-efficient emulation for large LEO constellations. Sim-
ilar concerns can also be raised for further IoT and edge computing
testbed tooling [5, 6, 21, 37, 38].

On the other hand, edge simulators such as iFogSim [30] or
FogExplorer [35, 36] are more cost-efficient and allow evaluating
larger topologies over a longer time period. These could be extended
to also simulate the “movement” of (LEO) edge nodes, yet would still
not allow users to run their actual application in experiments, thus
limiting accuracy of results to the assumptions of the underlying
simulation model.

Finally, network simulators such as ns–3 [16] let users explore
network-level effects such as congestion or routing in large-scale
networks. Kassing et al. have presented Hypatia [43], a network
simulator for large LEO satellite constellations based on ns-3 that
allows researchers to measure LEO satellite network characteristics

Tobias Pfandzelter and David Bermbach

Host 1

Configuration
File

File Systems

Kernels

Validator Constellation
Calculation

Machine
Manager

Animation
(optional)

Coordinator

Database

H
os

t
N

et
w

or
ki

ng

Machine
ManagerHTTP ServerDNS Server

Sa
te

lli
te

Se

rv
er

 1

Sa
te

lli
te

Se

rv
er

 2

Sa
te

lli
te

Se

rv
er

 3

Sa
te

lli
te

Se

rv
er

 N

…

…

Host 2 Host N

Fault Injection API Request

Figure 2: Celestial’s coordinator calculates satellite posi-
tions and updates machines and network links on Celes-
tial’s hosts.

on a packet-level. Similarly, SILLEO-SCNS [45], which Celestial’s
Constellation Calculation is based on, also facilitates studying and
visualizing such networks. While important in their own right,
these network simulators target a different use case, namely the
evaluation of network measurement, and cannot be used to evaluate
software systems.

In fact, to the best of our knowledge, there is no testbed tool-
ing which allows users to evaluate LEO edge software and, conse-
quently, systems researchers have until now not been able to study
the impact of the LEO edge environment on real applications and
platforms.

3 EMULATING THE LEO EDGEWITH
CELESTIAL

We present Celestial, a novel emulation tool for edge computing
on large LEO satellite constellations. An overview of its architec-
ture is shown in Fig. 2. Celestial can run on an arbitrary number
of standard Linux servers, e.g., in the cloud, and comprises two
main components: A central coordinator computes satellite orbital
paths and networking characteristics. This information is sent to
Celestial servers that host a microVM for each satellite server
and ground station. Celestial servers also manipulate network
connections between microVMs to accurately reflect satellite move-
ment, available links, as well as their delays and bandwidth. In this
section, we describe how we address the open research challenges
with Celestial.

3.1 Accurate Emulation of LEO Constellations
At the heart of Celestial, the Constellation Calculation component
updates the state of the satellite network periodically, including the
positions of satellites and ground stations, network link distance
and delays, and shortest paths between nodes. This is based in
large parts on the SILLEO-SCNS network simulator [45] for large
LEO satellite constellations, which we extend with support for
the SGP4 simplified perturbations models. Additionally, we use
more efficient implementations of Dijkstra’s algorithm [19] and the
Floyd-Warshall algorithm [25] to calculate the shortest network
paths within the constellation and their end-to-end latency.

SGP4 is the state-of-the-art in calculating the positions of satel-
lites and takes perturbations caused by atmospheric drag, the Earth’s
shape, and gravitational effects fromMoon or Sun into account [39].
The model input parameters can be obtained from the database of
NORAD two-line element sets (TLE)5 for satellites already in orbit
or calculated based on simple parameters such as a satellite shell’s
inclination and altitude. To limit side effects and ensure repeatable
testing, all parameters are passed within a single configuration file.
This includes network parameters, such as ISL bandwidth, com-
pute parameters that describe the allocated resources for satellite
and ground station servers, orbital parameters for satellite shells
to support different kinds of constellations, and ground station
locations.

Celestial then uses satellite and ground station positions to
calculate ground station uplinks and the satellite network topology.
Here, ISL connectivity depends on the line of sight between two
adjacent satellites, e.g., if a possible laser link drops below a certain
altitude, the Earth’s atmosphere may refract that laser, causing an
intermittent loss of connectivity. Similarly, ground stations can only
communicate with satellites that are above a configurable minimum
elevation above the horizon. In our tests, these calculations could
be completed within one second even on a standard laptop. The
results are then transferred to the hosts, where network delays and
bandwidth constraints between the satellite servers are emulated
using tc6 and tc-netem7. Emulated network delays are injected
with a 0.1ms accuracy and any latency between hosts is taken into
account, yet this only works if this latency is low enough, e.g.,
hosts are located in the same datacenter. Additionally, emulated
servers can still reach the Internet through the host, e.g., to store
experiment data in some central location.

We isolate microVMs in dedicated cgroups to gain more finely
grained control over the CPU cycles a server process is allowed to
use, making the emulation of severely constrained satellite servers
possible. Through an API, users can change machine parameters at
runtime and even terminate and reboot machines to model faults,
e.g., caused by radiation.

Celestial also provides an optional animation component that
visualizes the state of the constellation during the emulation run,
e.g., Fig. 1 was generated by this component. We believe that this
can be a great help in understanding the characteristics of satellite
mobility and networking as well as the effects on their software
systems, especially for developers who are new to satellite networks

In Celestial, we take all effects into account that are currently
conjectured to have a significant impact on software systems run-
ning on the LEO edge, namely dynamic network delays, bandwidth
restrictions, constrained compute and storage resources, and service
interruption through environmental effects such as radiation [9, 57].
When additional effects are studied and traces from real LEO edge
deployments become available, researchers will be able to quickly
incorporate the necessary changes in Celestial: First, the core
Constellation Calculation component that dictates the effects that
are emulated in the rest of the system comprises only 971 lines of
Python source code that can be easily customized and extended. The

5https://celestrak.com/NORAD/elements/
6https://man7.org/linux/man-pages/man8/tc.8.html
7https://man7.org/linux/man-pages/man8/tc-netem.8.html

https://celestrak.com/NORAD/elements/
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html

Testing LEO Edge Software Systems with Celestial

separation from Machine Managers allows the resulting network-
ing and machine parameters to be sent to host machines without
modification. Second, tc-netem offers advanced network emula-
tion features that are not currently used in Celestial, such as
packet loss or duplication, delay distributions, packet corruption, or
packet reordering. If such characteristics will be useful for LEO edge
testbeds in the future, they can be added with only small changes
to the Celestial codebase. Third, we forego the use of complex
dependencies such as orchestrators (e.g., Kubernetes or Mesos)
and overlay network tooling (e.g., Flannel or Calico) to reduce the
complexity of Celestial. While we rely on some of their underly-
ing technologies, such as the firecracker-containerd plugin8,
not including such complex software simplifies prototyping new
features and reduces maintenance efforts of our implementation,
especially considering the required changes to such dependencies.

3.2 Support for Arbitrary Software Systems
All satellite and ground station servers are emulated with Fire-
cracker [1] microVMs that run on the Celestial hosts, managed by
the Machine Manager components. Firecracker microVMs provide
a sub-second boot time and support for microVM suspensions, and
can use configurable Linux kernels and root filesystems. Celestial
thus gives users the control over kernel features, installed software,
and programming and deployment models for their applications.
The process of compiling filesystems, starting (cloud) hosts, and
uploading the necessary files can be automated using common or-
chestration tools such as Ansible9, yet it is highly user-specific, so
we do not include it in Celestial. Crucially, satellite servers are
thus provided as a blank-slate and users may even set up container
technologies such as Docker within their emulated servers. This is
of considerable importance for systems researchers, as it also facili-
tates the evaluation of container-based application orchestration
using tools such as Kubernetes or FaaS platforms [11, 53].

To aid the development of applications and platforms on Celes-
tial, it includes two additional components: First, each Celestial
host provides a local DNS server that can resolve microVM net-
work addresses with a custom DNS record. Applications can simply
query the A records for, e.g., 878.0.celestial to get the network
addresses of satellite 878 in the first shell. Applications thus do not
have to be aware of the underlying IP address space calculation for
Celestial’s virtual network interfaces.

Second, Celestial hosts run an HTTP server that provides infor-
mation on satellite positions, network paths between satellites, con-
stellation information, and more to the emulated satellite servers.
This information is sourced from a central database on the Celes-
tial coordinator that is updated by the Constellation Calculation.
Application developers can leverage this API to quickly test their ap-
plications on different kinds of LEO constellations without having
to implement a custom model of satellite movement and network
behavior. In a real LEO edge computing scenario, we expect such
information to be available from a central source provided by the
satellite network operator or from public sources such as a TLE
database. However, users are free to use only a subset or none of
these APIs, e.g., when testing their own models.

8https://github.com/firecracker-microvm/firecracker-containerd
9https://www.ansible.com/

3.3 Cost-Efficient Scalability
To emulate arbitrarily large LEO and complex LEO satellite con-
stellations with thousands of satellite servers, Celestial supports
horizontal scale-out across many hosts over which microVMs are
distributed. For this, users may simply instantiate necessary cloud
infrastructure that can be terminated once experiments and tests
are completed. Celestial automatically creates an overlay network
using WireGuard [20], thus connecting hosts and offering routing
between microVMs. Further, the use of microVMs allows for high
over-provisioning as well as collocation of many emulated satellite
servers on few physical servers. In Celestial, we use the fact that
all satellite servers are identical to our advantage and de-duplicate
microVM root filesystems using a common immutable disk image
in addition to an overlay for each microVM, allowing us to save on
storage space and improve performance.

Celestial can emulate large and complex LEO satellite constel-
lations with thousands of satellite servers, yet not every test or
evaluation requires emulating each individual satellite server at
the same time: As an optional feature, we introduce a configurable
bounding box, a geographical area on Earth to which emulated satel-
lite servers are limited. As satellites are mobile, they can quickly
move in and out of this bounding box and may only stay relevant
for evaluation for a few minutes. To free up resources, satellite
microVMs are suspended when they move out of the bounding
box and re-activated when they come back into it. The underly-
ing idea is that in edge computing, clients will want to use edge
servers that are in their proximity, and distant edge servers will
thus not need emulation. To give an example, in §4, we use the
bounding box to only emulate satellites over North Africa, where
our clients are located, to save resources. Celestial also helps the
user configure their bounding box in a manner that makes sure
that available resources meet the demand from the emulation based
on per-microVM resources and bounding box area. Note that this
bounding box does not affect network path calculation, as the short-
est network path between two ground stations may not follow the
line of sight. This allows algorithms, applications, and platforms
for large LEO satellite constellations to be tested cost-efficiently on
a minimal subset of servers before moving to an emulation of the
entire constellation.

4 DEPLOYING AN EDGE APPLICATION ON
CELESTIAL

To evaluate Celestial’s performance, accuracy, and scalability, we
first deploy an example LEO edge application, namely a multi-user
interaction between users in West Africa as presented by Bhat-
tacherjee et al. [9]. In this example, which we illustrate in Fig. 3,
three users located in Accra, Ghana; Abuja, Nigeria; and Yaoundé,
Cameroon require a common meetup-server for their application.
While their nearest available cloud data center is located in Johan-
nesburg, South Africa, using a satellite server reduces the RTT for
the most distant of the three users from 46ms to only 16ms over
SpaceX’ phase I Starlink network.

We implement this as a WebRTC video conference where each
participant sends high-definition video at 2.6Mb/s and receives a
video stream from the other participants. An intermediary bridge
server, our meetup service, duplicates each user’s stream for all

https://github.com/firecracker-microvm/firecracker-containerd
https://www.ansible.com/

Tobias Pfandzelter and David Bermbach

Johannesburg, South Africa

.
¸

.
¸

Client

Data Center

Satellite

Closest Satellite Server

Possible Satellite Server
Bounding Box

Yaoundé, Cameroon

Abuja, Nigeria

Accra, Ghana

Figure 3: Three clients in Accra, Ghana; Abuja, Nigeria; and
Yaoundé, Cameroon, require a commonmeetup-server for an
interactive application. This meetup server may be located
in a satellite server or the nearest cloud datacenter in Johan-
nesburg, South Africa. Dashed lines indicate the additional
hops needed to reach the cloud datacenter [9].

other users rather than each user sending multiple copies of their
stream at the same time, which would put a considerable strain
on their bandwidth. We can now compare two scenarios: First,
we run the video bridge on the datacenter, which we assume to
have an antenna to access the satellite network [65], which is the
best-case scenario for latency to our clients. Second, we deploy a
small tracking service to this datacenter that periodically checks
the satellites in reach of our clients and instructs them to use the
optimal satellite server based on combined latency as a video bridge
server. As the video bridge for our real-time video conferencing
use-case can be considered stateless, we do not take any migration
costs into account. We discuss the issue of state management on
the LEO edge in §7.7.

4.1 Experiment Setup
We assume both laser propagation in a vacuum and propagation
of ground-to-satellite RF links at speed of light 𝑐 [31, 64] and a
10Gb/s bandwidth connection for ISLs and radio links. We allocate
four CPU cores and 4GB memory for each client and the tracking
service, while each satellite server as well as the cloud video bridge
are allocated two CPU cores and 512MB memory. To limit resource
usage and the number of satellite servers the tracking service must
consider, we draw a bounding box as shown in Fig. 3. To minimize
the impact of clock drift in delay measurements between our clients,
we schedule them to run on the same Celestial host and instruct
them to use a shared PTP clock. In a preliminary baseline evaluation,
we find that our clients and bridge server incur a 1.37ms median
processing delay (3.86ms standard deviation) that we must take
into account when comparing measured end-to-end latency and
expected network distance. We expect our client measurement

software, packet duplication, packet forwarding, and clock drift to
cause this jitter.

Our experiments are conducted on three Google Cloud Plat-
form N2-highcpu instances with 32 cores and 32GB memory each,
placed in the europe-west3-c zone, connected in a private virtual
network, and using an installation of Ubuntu 18.04. We measure a
network delay of 0.2ms between those machines, yet this delay is
already taken into account by Celestialwhen emulating microVM
network distance. Although larger instances are available that may
allow us to host our testbed on only a single cloud server, our goal
is to show the horizontal scalability of Celestial. While Celestial
estimates 137 required CPU cores given satellite density and bound-
ing box size, we use only 96 CPU cores to test its over-provisioning
capabilities. As our application actually uses resources on only one
satellite server at a time, we expect only a small load on our Ce-
lestial servers. In addition, we run our Celestial Coordinator
on a GCP C2 instance with 16 cores and 64GB memory and choose
an update interval of two seconds. Each experiment is ten minutes
long and repeated three times to validate its reproducibility.

4.2 Results
We start by giving an overview of the results of our experiments
by presenting the results of a randomly selected run. We can then
validate the accuracy of the network conditions in our Celestial
testbed by comparing it to the simulated network, analyze the
reproducibility of our experiments on Celestial, and finally check
resource efficiency.

We show the cumulative distributions of measured end-to-end la-
tency between client pairs in Fig. 4. For at least 80% of the duration
of the video conference, end-to-end latency is below this maxi-
mum RTT of 16ms for the satellite servers and 46ms for the cloud
server, confirming our expectation that satellite servers can provide
a considerable QoS improvement for clients in latency-sensitive
applications.

While available bandwidth is an unlikely factor for increased
latency in the remaining 20% given the small size of our video
stream, processing delaymay add several milliseconds. Additionally,
we cannot assume an optimal server to be selected at all times as,
in some instances, the satellite constellation may change noticeably
during the five-second update interval used in our application, e.g.,
with a particular uplink satellite becoming unavailable.

We further observe that only satellites in the two shells with
the lowest altitude and highest density are ever selected as satellite
servers, as they are more likely to have an optimal connection to all
three clients at the same time. In deploying LEO edge infrastructure,
it might thus make sense to start with the densest and lowest
altitude shell.

Accuracy. To investigate whether the measured latency over
time is accurate, we compare expected network latency as calcu-
lated by our tracking server, which includes the 1.37ms median
processing delay. As an example, we show this comparison for the
path from Abuja to Accra using the cloud server over the course of
one evaluation in Fig. 5.

Both curves follow the same general trend and changes in calcu-
lated network latency are reflected in measured end-to-end latency.
Again, we note that the tracking server only chooses a new server

Testing LEO Edge Software Systems with Celestial

0 20 40 60
Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
ist

rib
ut

io
n

16ms 46ms

Bridge Server
Satellite
Cloud

(a) Accra to Abuja

0 20 40 60
Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
ist

rib
ut

io
n

16ms 46ms

Bridge Server
Satellite
Cloud

(b) Accra to Yaoundé

0 20 40 60
Latency [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

D
ist

rib
ut

io
n

16ms 46ms

Bridge Server
Satellite
Cloud

(c) Abuja to Yaoundé

Figure 4: Our results show that the satellite servers can offer better QoS over the cloud data center, with only up to 15ms
end-to-end latency for our users for 80% of the duration of their video conference.

0 100 200 300 400 500 600
t [s]

40

50

60

70

La
te

nc
y

(1
s

R
ol

lin
g

M
ed

ia
n)

 [m
s] Type

Measured
Expected

Figure 5: Measured and expected end-to-end latency from
Abuja to Accra using the Johannesburg cloud datacenter. The
expected value includes both simulated network distance
and median processing delay of 1.37ms.

0 100 200 300 400 500 600
t [s]

40

50

60

70

La
te

nc
y

(1
s

R
ol

lin
g

M
ed

ia
n)

 [s
] Run

1
2
3

Figure 6: Measured end-to-end latency from Yaoundé to
Abuja using the Johannesburg cloud datacenter across three
repetitions of the experiment

at the coarse interval of five seconds and intermittent changes in
infrastructure that can cause spikes in end-to-end latency are thus
not reproduced in expected network distance. Additionally, the
jitter in our measurements is likely caused by processing as we
observe it in our baseline measurements as well. We thus conclude
that simulated network distances are accurately reflected in the
emulated testbed.

Reproducibility. Furthermore, we can investigate whether our
results are reproducible by looking at the results from the three
repetitions we carry out for each experiment. As an example, we
plot the measured end-to-end latency from Yaoundé to Abuja using
the cloud server across the three repetitions in Fig. 6.

0 100 200 300 400 500 600
t [s]

0

20

40

60

C
P
U

 C
or

e
U

sa
ge

 %

Machine Manager
Firecracker microVM
Firecracker Processes

0

20

40

60

#
 F

ire
cr

ac
ke

r
P
ro

ce
ss

es

Figure 7: CPU usage on one Celestial host over the course
of one experiment. In total, 32 CPU cores are available on
the host.

0 100 200 300 400 500 600
t [s]

0

5

10

15

M
em

or
y

U
sa

ge
 %

Machine Manager
Firecracker microVM
Firecracker Processes

0

20

40

60

#
 F

ire
cr

ac
ke

r
P
ro

ce
ss

es

Figure 8: Memory usage on one Celestial host over the
course of one experiment. In total, the host has 32GB avail-
able memory.

We can observe that results for all three runs follow the same
trends and even the spike in measured latency after the first minute
of the experiment can be reproduced. Since users can provide an
arbitrary but firm starting point for their testbed emulation, Ce-
lestial offers a repeatable environment that enables reproducible
tests and benchmarks.

Efficiency. Finally, in a separate test we trace the CPU and mem-
ory usage on our Celestial hosts for a glimpse into the resource
efficiency of our testbed. Specifically, we look at the host under
the highest load, which is that on which all our clients run for
accurate time synchronization, in addition to a third of all satellite
servers. We show its CPU and memory utilization in Figs. 7 and 8,
respectively.

Tobias Pfandzelter and David Bermbach

At the beginning, we see a spike in CPU usage caused by Ce-
lestial’s Machine Manager as it starts setting up the host and
network environment, followed by an even larger spike as Fire-
cracker microVMs are starting to boot up at the beginning of the
emulation run. CPU usage then decreases to below 5% as the clients
prepare for the experiment, e.g., by synchronizing clocks and read-
ing the workload traces. Then, during the experiment, we see total
CPU usage from microVMs on the order of 10%. Considering that
three clients and one tracking server with four allocated CPU cores
each, and one active bridge server with two allocated cores run a
demanding workload, and at least 25 additional satellite servers
idle, we can conclude that Celestial is efficient on CPU resources
as it can benefit from over-provisioning. Additionally, note that
Celestial’s Machine Manager itself consumes few CPU resources
after the initial start up, an average of 0.2% with a slightly higher
load every two seconds as the constellation is updated.

On the other hand, Celestial’s Machine Manager uses up to
4.5% of the host’s available memory from the start of the simulation,
although that number decreases after the demanding initial setup.
Firecracker microVM memory usage increases linearly with the
number of booted microVMs, regardless of whether they are sus-
pended or not, as each keeps a virtio memory device that blocks
a fixed portion of the host’s memory for the VM. As microVMs are
only suspended when their corresponding satellites move out of
the bounding box, their memory is not released. While this has not
been an issue in any of our experiments, because microVM mem-
ory usage stays below 20% even on hosts with comparatively little
available memory, Firecracker microVMs can also be configured to
use ballooning to allow the host to reclaim unused memory from
the VMs.

Finally, we also note the cost of our testbed: For our three hosts
and one coordinator, a 10-minute experiment with an additional five
minutes for setup and data collection yields a total cost of $3.30 on
Google Cloud Platform. For comparison, creating 4,409 f1-micro
virtual machine instances, with one for each satellite server, costs
at least $539.66 for 15 minutes [28].

5 CASE STUDY: REAL-TIME OCEAN
ENVIRONMENT ALERTS WITH REMOTE
SENSORS

Using Celestial, we can empirically investigate the potential of
the LEO edge for applications that may benefit from running at
the network edge. One class of such applications are real-time
monitoring services, e.g., in the context of industrial IoT or en-
vironment observation. The National Oceanic and Atmospheric
Administration’s (NOAA) Deep-ocean Assessment and Reporting of
Tsunamis (DART) project uses remote sensing on stationary buoys
located in the Pacific to detect early tsunami warning signs [27, 50].
Given their remote locations, these sensors cannot communicate
over terrestrial networks, but instead use the Iridium LEO satellite
constellation. Sensor data is sent to the Pacific Tsunami Warning
Center on Ford Island, Hawaii, where it is processed centrally. This
system’s architecture is illustrated in Fig. 9.

We use a system inspired by DART to evaluate if and how LEO
edge computing can assist real-time ocean environment monitoring
for use cases such as Tsunami warning. In our experiments, 100

Sensor
Buoy

Pacific
Island

Pacific Tsunami
Warning Center

ISLISL

Figure 9: DART stations are remote buoys equipped with
environment sensors, such as pressure recorders, that send
their measurement data over the Iridium satellite constella-
tion. Sensor data is processed with an LSTM neural network
in a central processing location (orange) or on the LEO edge
(green). Inferred data is sent to geographically close island
ground stations and ships.

Figure 10: In our experiments, 100 data buoys in the Pacific
Ocean send sensor data over the Iridium satellite network.
Sensor readings are used for inference with a LSTM neural
network and results are forwarded to 200 ships and islands.
Ground stations and their connections are shown in bright
green, satellites in red. As a result of the 180° arc of ascending
nodes in the Iridium constellation, no ISLs exist between
satellites of the first and last orbital plane of the constellation,
as these satellites move in opposite directions.

data buoys in the Pacific Ocean transmit sensor readings over the
Iridium satellite network. The Iridium satellite network has only
one shell, 66 satellites in 6 planes at a 780km altitude, in a polar
orbit (90° inclination) and spaced evenly only around half the globe
(180° arc of ascending nodes) so that the other half is covered by
satellites descending their orbit [18]. As a result of this spacing,
the Iridium constellation cannot provide ISLs between the first and
last orbital planes, which is reflected in our testbed. The readings,

Testing LEO Edge Software Systems with Celestial

grouped by sensor location and type, are used to predict weather
and environmental events with a long short-term memory (LSTM)
neural network [40]. Results are then distributed to ships and is-
lands in the vicinity of the sensor, using a total of 200 locations.
We show this topology in Fig. 10. We compare two different de-
ployments of the inference service: First, we deploy it in a central
ground station server at the location of the Pacific Tsunami Warn-
ing Center on Ford Island, Hawaii. Second, we deploy the inference
service on each of the Iridium satellites, facilitating device-to-device
communication.

5.1 Experiment Setup
All components of our experiments run on a Celestial testbed.
Sensor data is sent at a one-second interval over UDP. Again, we
use shared PTP clocks to minimize the impact of clock drift. Both
sensors and data sinks are equipped with one CPU core and 1024MB
memory. The inference service uses a TensorFlow stacked LSTM
network. In the satellite deployment, satellite servers each have
one CPU core and 1024MB memory, whereas we equip the ground
station server with eight CPU cores and 8192MB memory in the
datacenter deployment. Satellite link bandwidth is set at 88Kb/s
for sensors and data sinks as recommended by Iridium for remote
sensing applications [?]. ISLs and links to the central processing
ground station are set at 100Mb/s.

All experiments are conducted on a cluster of four GCP N2-highcpu
instances with 32 cores and 32GB memory each, placed in the
europe-west3-c zone and using an installation of Ubuntu 18.04. In
addition, the Coordinator is hosted on a GCP C2 instance with
16 cores and 64GB memory, with an update interval of 5 seconds.
Each experiment is 15 minutes long with an additional five-minute
startup phase for the system to stabilize. We repeat each experiment
three times and present results for the median runs.

5.2 Results
In Fig. 11, we show the mean end-to-end latency for the real-time
ocean environment alert system. Overall, the satellite server de-
ployment leads to a better performance compared to the centralized
deployment. As a result of the shorter communication distances,
end-to-end latency is reduced from between 22ms and 183ms to
between 13ms and 90ms. Note that processing latency is similar
between both deployments, at an average of 2ms. Further, Fig. 11a
shows that ground stations that require data from the same sensors
observe similar delays, a result of the device-to-device architecture.

The effect of the lack of ISLs between first and last orbital plane
of the Iridium constellation can be seen in both deployments: Over
the course of the experiment, locations in the West Pacific region
(Asia and Oceania) tend to connect to uplink satellites from the
last orbital plane, while those in the Americas connect to the first.
Consequently, any requests between those locations must be routed
through satellites near the poles, increasing the communication
delay. In the central processing deployment, this leads to a higher
observed latency in this area over the course of the experiment,
as all sensor data are routed in this manner. In higher latitudes,
which are nearer to the North Pole, this effect is not as pronounced.
With satellite servers, however, data is only routed across shorter
geographical distances. Increased communication delays can thus

only be observed when sensor station and data sink connect to
opposite planes of the constellation, which happens less frequently
when both are geographically close.

5.3 Opportunities and Implications for LEO
Edge Applications

The results of our experiments show that LEO edge computing
can improve QoS for remote-sensing applications where commu-
nication delay is the limiting factor. Without sending all data to
a central processing facility, such as a cloud datacenter, and in-
stead processing it on the communication path, significant latency
improvements can be achieved. For this machine-to-machine com-
munication use-case, on-device processing could not yield such
an improvement: In case of processing on data buoys, sensor data
would need to be sent back to buoys of the same group, incur-
ring additional delays. Processing directly at the data consumers,
i.e., island or ship ground stations, requires performing the same
computation on several machines.

Please note that our experiment assumed rather small data vol-
umes being sent: Since communication delay is the main cost factor
in end-to-end latency, larger data volumes will increase the latency
difference further. Also, larger data volumes will at some point
make it inefficient to transmit all data for centralized processing –
similar to bandwidth limits in terrestrial edge computing [52]. Sim-
ilar to terrestrial edge computing, however, centralized processing
may be more efficient for scenarios with low data volumes that can
tolerate the higher end-to-end latency.

6 CASE STUDY: LEO EDGE DEPLOYMENT FOR
AWEB APPLICATION

Using Celestial, we can empirically investigate the potential of
the LEO edge for web applications, which can typically benefit
from running at the network edge to provide lower response times
for clients. As an example web application, we use Twissandra, a
Twitter clone that uses a stateless Python web service backed by
a Cassandra database, as shown in Figure 12 [24, 29]. Users inter-
act with Twissandra in a browser by reading and posting tweets,
while the web service queries the database and generates web pages
with server-side rendering. Cassandra is a decentralized and dis-
tributed database that can be deployed across multiple hosts and it
is accessed over the CQL native binary protocol [47].

In our experiments, clients in 120 European cities interact with
Twissandra over the proposed Kuiper network, as shown in Fig-
ure 13. The Kuiper constellation comprises three shells: 1,156 satel-
lites in 34 planes at a 630km altitude and 51.9° inclination; 1,296
satellites in 36 planes at a 610km altitude and 42° inclination; and
784 satellites in 28 planes at a 590km altitude and 33° inclination [43].
We compare two different deployments of Twissandra: First, both
the web service and Cassandra are deployed in a single datacenter,
located centrally in Frankfurt, Germany. Second, we deploy only
Cassandra in that datacenter and run an instance of the Twissandra
web service on each satellite server in the first shell of the Kuiper
constellation. Clients in Europe are not in reach of the other two
shells during large parts of the day given their low orbit inclination.

Tobias Pfandzelter and David Bermbach

25ms 100ms 175ms

(a) Deployment with Central Processing Location

25ms 100ms 175ms

(b) Satellite Server Deployment on Iridium Constellation

Figure 11: Mean observed end-to-end latency for two different deployments: Colored circles show data sinks, crosses show
remote sensor locations, and gray lines indicate data paths. A greater communication distance to the central processing location
also increases the communication delay (Fig. 11a), while a satellite server deployment results in uniform load distribution
(Fig. 11b). In both deployments, the lack of ISLs between first and last orbital plane of the Iridium constellation increases the
communication delay towards the West Pacific region.

Cassandra

Cassandra

D
ata R

eplication

Twissandra

Twissandra

Twissandra

…

Users

CQL Native/TCP

HTTP

Figure 12: Clients access Twissandra through a stateless web
service that is backed by a distributed Cassandra database.

6.1 Experiment Setup
All components of our experiments run inside our Celestial testbed.
Clients run an HTTP load generator that measures web service
response times and are equipped with one CPU core and 512MB
memory. In the satellite server deployment, clients run a local
proxy that proxies requests to the nearest satellite server. In both
deployments, Cassandra has eight CPU cores and 8192MB memory
available. In the datacenter deployment, we equip the web service
server with eight CPU cores and 8192MB memory, whereas each of
the satellite servers in the satellite deployment has one CPU core
and 1024MB memory.

All experiments are conducted on a cluster of four GCP N2-highcpu
instances with 32 cores and 32GB memory each, placed in the
europe-west3-c zone and using an installation of Ubuntu 18.04. In
addition, the Coordinator is hosted on a GCP C2 instance with
16 cores and 64GB memory, with an update interval of 5 seconds.
Each experiment is 15 minutes long with an additional five minute

Figure 13: In our experiments, clients in 120 European cities
(bright green) access the Kuiper network to interact with
the Twissandra web application. The first shell with a 51.9°
inclination (turquoise) can be accessed by clients in all of
Europe except parts of Scandinavia, which we omit from
our experiments. The shell at a 42° inclination (orange) is
accessible only in more southern cities, while that at a 33°
(purple) is inaccessible to almost all client locations.

startup phase for the system to stabilize. We repeat each experiment
three times and present results for the median runs.

6.2 Results
In Figure 14, we show the median response times for client requests
to the Twissandra web application. Overall, GET requests for the
public timeline take a median 300ms for the cloud deployment

Testing LEO Edge Software Systems with Celestial

100ms 300ms 500ms

(a) Client GET Requests in Twissandra Datacenter Deployment

100ms 300ms 500ms

(b) Client GET Requests in Twissandra Satellite Deployment

300ms 700ms 1100ms

(c) Client POST Requests in Twissandra Datacenter Deployment

300ms 700ms 1100ms

(d) Client POST Requests in Twissandra Satellite Deployment

Figure 14: Median response times for client requests to Twissandra timeline for two different deployments: While the satellite
deployment leads to a better overall performance, satellite servers can become a bottleneck when serving densely populated
areas, as seen, e.g., for clients in the UK and west Germany.

and 180ms for the satellite deployment, a 40% improvement. Simi-
larly, the average response time for a POST request to create a new
tweet improves by 31% from 580ms to 400ms10. This improvement
cannot necessarily be attributed to only the deployment topology
of our web service. While the datacenter Twissandra server has
more resources than the individual satellite servers, requests are
naturally sharded across multiple satellite servers in the distributed
deployment.

One consequence of this natural sharding is that satellite servers
can become a bottleneck when serving areas that are densely pop-
ulated with clients, as shown in Figures 14b and 14d. In the UK and

10Please note that these values are comparatively large for a simple web service as
Twissandra is primarily implemented for educational and research purposes, conse-
quently sacrificing some performance optimizations.

west Germany, where multiple clients are located in close proxim-
ity and thus share common satellite uplinks, one satellite serving
more clients leads to higher response times. On the other hand,
clients in east Europe benefit from the satellite deployment: These
areas are sparsely populated with clients and can thus use more
resources on their nearest satellite server. In the centralized deploy-
ment, however, requests to the distant Frankfurt datacenter incur
more network delays.

While the total network distance is identical for a client accessing
the central database through the web service regardless of where
that web service is deployed along the network path, distant clients
measure a lower response delay when accessing a nearby datacenter.
This can be explained in part by the overhead of opening TCP con-
nections: The connection between the web service and database can
be persisted, as the service will continuously query that database,

Tobias Pfandzelter and David Bermbach

whereas clients incur the overhead of the 3-way handshake when
starting a new session. When the distance of client to web server
is smaller, as is the case when we deploy Twissandra on satellite
servers, this overhead decreases as well. Additionally, in our satel-
lite deployment, the longer leg of the transmission uses Cassandra’s
efficient CQL binary protocol format rather than HTTP.

6.3 Implications for LEO Edge Web Applications
Our experiments shed some light on the issues and opportunities
involved in deploying web application on the LEO edge: Clients in
sparsely populated areas can benefit from nearby web servers, while
satellite servers can simultaneously become bottlenecks where
many clients share a common uplink. For the LEO edge, this trade-
off might actually be feasible if we expect satellite Internet to be
more popular in sparsely populated rural areas, whereas densely
populated urban areas can use terrestrial fiber. Alternatively, the
skew in client density can be addressed by offloading client re-
quests from the closest to nearby satellite servers as proposed by
Bhattacherjee et al. [9].

Additionally, we may not be able to deploy all web services on
all satellites as we have done in our evaluation. While this can
lead to even more bottlenecks when less resources are available
in total, we can also expect resource usage to average out across
satellite servers as more clients share satellites. Placing services on
satellite servers efficiently on the 2D torus network will be a future
challenge in this field, akin to the facility location problem [3, 48].

We have also observed the impact of network communication
overheads on the performance of our web application, as we have
identified the TCP handshake, connection persistence, and the ef-
ficiency differences between the CQL native protocol as possible
influences on the overall request delays. While the network stack
has typically been less of an issue in traditional web applications,
it will be a more important factor when planning a deployment on
the LEO edge.

7 DISCUSSION & FUTUREWORK
In our evaluation of Celestial, we find that it fulfills our original
requirements for a LEO edge testbed. In this section, we discuss
threats to validity as well as limitations of our work and derive
avenues for future work on Celestial and the LEO edge.

7.1 Limits to Scalability
In our experiments we show that Celestial is horizontally scalable
across multiple servers and that we can run an application in a
realistic environment of large LEO edge infrastructure. We use both
over-provisioning of our hosts and a bounding box to achieve this
in a cost-efficient manner, but there may be use-cases where neither
is an option. When emulation of the entire infrastructure is needed
and all satellite and ground station servers run at their full capacity,
host infrastructure must be sized appropriately, e.g., requiring 36TB
of memory when emulating a full constellation of 4,400 satellites
with 8GB memory each.

While Celestial is designed to scale out across as many hosts
as necessary, we must assume that such scale comes with caveats.

The network connection between hosts could, for example, be-
come a bottleneck if inter-satellite communication bandwidth ex-
ceeds available physical bandwidth. Some of these effects could be
mitigated in Celestial by dynamically migrating satellite server
microVMs across hosts to optimize communication and resource
provisioning or by using a more advanced scheduler such as Fire-
Place [4].

7.2 Resource Isolation in microVM Collocation
ChoosingmicroVMs over alternative technologies allowsCelestial
to provide an application-agnostic runtime environment while also
achieving cost-efficiency through collocation of different machines
on one physical server. Nevertheless, that collocation can also come
at a price if resources are not appropriately available and microVMs
start competing for, e.g., CPU cycles. While satellite servers are
independent of each other, with each server placed on an individual
satellite, microVMs on one host may affect each other’s performance
if their processes are scheduled on the same physical host CPU core.
In practice, these effects cannot be easily circumvented without
attaching microVM processes to host CPU cores strictly, which
limits scalability as it inhibits over-provisioning of hosts. However,
we see that this can only become a larger problem once resources
required by satellite servers exceed the host’s resources, which
can be mitigated by scaling Celestial hosts vertically through
additional CPU cores or memory, or horizontally by adding further
host machines.

7.3 Impact of microVM Suspension
Celestial’s bounding box allows for a smaller testbed footprint
by suspending microVMs of satellite servers that move outside a
specified area. In our example application, we have seen how this
reduces the load on the Celestial hosts without impacting the
application. There may be some cases where microVM suspension
has unwanted side effects on the user’s application. If the satellite
server software is expected to change its state based on its location,
e.g., a CDN service that needs to proactively replicate files before
it is in reach of a ground station, it will not be able to do so while
the machine is suspended and will potentially have to catch up to
missed updates once it is activated again. To avert this, a user may
increase the size of their bounding box, possibly to cover the entire
earth so that no microVM is ever suspended. Note that this requires
more host resources and hence increases cost.

7.4 Assumptions on Hardware Architecture
To work on commodity hardware, Celestial assumes satellite
servers to have the same hardware architecture as common terres-
trial servers, i.e., the x86-64 architecture supported by Firecracker.
In reality, we cannot currently know the hardware which will be
used on the LEO edge. Specific hardware features such as special
instructions or real-time guarantees can thus not be emulated on
Celestial at the moment and would require full hardware vir-
tualization or at least emulation of a subset of instructions. Still,
even if future LEO edge operators were to go the unlikely path of
developing a unique compute infrastructure for satellite servers,
Celestial could still provide a realistic environment to evaluate
algorithms and programming models.

Testing LEO Edge Software Systems with Celestial

7.5 Emulating External Factors
Although Celestial can emulate satellite server degradation, e.g.,
caused by radiation, there are many other external factors that
can impact satellite constellations. To give one example, satellites
may not always follow completely deterministic orbits. Starlink’s
satellites are equipped with ion thrusters to adjust their orbits,
which can be necessary to dodge space debris or other satellites [2,
26]. This has effects on the network as well, as physical distances
change or ISLs can become unavailable during such maneuvers.

Adverse weather conditions can have an effect on the radio link
between a ground station and satellites, with radio dishes overheat-
ing [13] and rain causing refraction of radio waves [59]. Ground
station equipment may also be mobile, e.g., if installed on a plane
or car, which must be taken into account when selecting uplink
satellites. Such factors may impact LEO edge applications, and it
can be helpful to test their effects ahead of application deployment.

The separation of Constellation Calculation and Machine Man-
agers in Celestial will allow researchers to incorporate new mod-
els quickly, as only the calculation component must be extended.
The resulting networking and machine parameters can then be
sent to the host machines without modification. Additionally, tc
and tc-netem offer advanced network emulation features that can
be used in Celestial in the future with only small changes to its
codebase, such as packet loss or duplication, delay distributions,
packet corruption, or packet reordering. Whether these emulated
characteristics will be useful for LEO edge testbeds depends on
future research on LEO satellite network measurements.

While no efficiently emulated testbed can ever be fully accurate
with respect to the environment it emulates, we believe that the
current feature set of Celestial accurately reflects what is known
about the LEO edge today. As future research on LEO satellite net-
works will likely yield additional insights on the effects of external
factors, Celestial can easily be adapted or extended in all possible
directions thanks to its small and simple codebase.

7.6 Lack of Validation Data
With Celestial, one of our goals is to emulate the LEO edge accu-
rately, yet the only method to verify this is to compare our measure-
ments with simulation results. What the research community is
still missing are realistic data traces for large LEO satellite constel-
lations, as network operators guard their data to keep a competitive
edge. The recent SatNetLab proposal for a research platform for
global satellite-based networks [62] may change this in the future,
and we hope to adapt Celestial’s network calculation as new data
becomes available.

7.7 Future Work on LEO Edge Systems
With its scale and dynamic topology, the LEO edge poses signif-
icant challenges for applications. To simplify the deployment of
services, systems researchers should address these challenges with
application platforms that abstract from the underlying infrastruc-
ture. The number of satellite servers will require new coordination
approaches to guarantee service consistency. Further, the servers’
limited resources must be allocated efficiently, while they are pos-
sibly even shared by multiple tenants [57].

The high mobility of LEO satellites introduces the additional
challenge of state management: Clients will frequently need to con-
nect to a new satellite edge server, and any server-side state must
be migrated accordingly. Bhattacherjee et al. [9] have proposed
the concept of “virtual stationarity”, where such state is migrated
between satellites based on their locations relative to Earth, so that
data appears to be in the same location from a client perspective.
Further, such state management requires routing the clients’ re-
quests to the correct satellite server, which is made more difficult
by the dynamic network topology.

Celestial itself does not include any strategies for state man-
agement, request routing, or service management, as it is intended
as a testbed on which future systems implementing such strategies
can be evaluated.

7.8 Feasibility of the LEO Edge
Finally, Celestial’s utility depends heavily on the future of the
LEO edge. While considerable resources are committed to the devel-
opment of large LEO satellite networks to provide global Internet
coverage, LEO edge computing has so far only received limited at-
tention from research and industry. If current trends in this field do
not come to fruition and satellite network operators do not see suffi-
cient financial incentives in operating LEO compute infrastructure,
Celestial can only be used for theoretical evaluation.

Nevertheless, we also see this as an opportunity to discover those
incentives: Celestial makes it possible to easily evaluate possible
LEO edge applications and to bootstrap the development of LEO
edge infrastructure.

8 CONCLUSION
In this paper, we have motivated the need for a testbed for the LEO
edge that enables systems researchers, application developers, and
platform designers to test and evaluate their LEO edge computing
software on Earth. With Celestial, we have answered how such a
testbed can be built for accuracy, in an application-agnostic manner,
and with cost-efficiency and scalability in mind. In support of those
claims, we have used Celestial to deploy a LEO edge application
from the existing body of research. Additionally, we have shown
in a case study how we use Celestial to empirically evaluate the
potential of the LEO edge for remote sensing applications and for
web applications.

Finally, we have laid out interesting avenues for future work:
With Celestial, researchers will now be able to build and test
platforms and systems for the LEO edge that address the challenges
of state management, resource allocation, or request routing. To
further improve the accuracy of emulated testbeds, experiences
and data of real LEO edge deployments are needed. We hope that
Celestial, which we have published as open-source, can be of
great use in this further research on and development of LEO edge
computing.

ACKNOWLEDGMENTS
We thank our anonymous reviewers, our anonymous shepherd,
and our colleague Dr. Jonathan Hasenburg for their valuable feed-
back on this work. Funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 415899119. This

Tobias Pfandzelter and David Bermbach

work is supported by the Google Cloud Research Credits program
(GCP202443755) and by the AWS Cloud Credit for Research pro-
gram.

REFERENCES
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, andDiana-Maria Popa. 2020. Firecracker: Lightweight
Virtualization for Serverless Applications. In Proceedings of the 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’20). 419–
434.

[2] Salvatore Alfano, Daniel Oltrogge, Holger Krag, Klaus Merz, and Robert Hall.
2021. Risk Assessment of Recent High-Interest Conjunctions. Acta Astronautica
184 (2021), 241–250.

[3] Babatunde Azeez, Hogil Kim, Yuho Jin, and Eun Jung Kim. 2006. I/O Node Place-
ment for Performance and Reliability in Torus Networks. In International Con-
ference on Parallel and Distributed Computing and Systems (PCDS2006), IASTED.

[4] Bharathan Balaji, Christopher Kakovitch, and Balakrishnan Narayanaswamy.
2021. FirePlace: Placing Firecraker Virtual Machines with Hindsight Imitation.
In Proceedings of Machine Learning and Systems (MLSys 2021). 652–663.

[5] Daniel Balasubramanian, Abhishek Dubey, William R. Otte, William Emfinger,
Pranav S. Kumar, and Gabor Karsai. 2014. A Rapid Testing Framework for a
Mobile Cloud. In Proceedings of the 2014 25th IEEE International Symposium on
Rapid System Prototyping. 128–134.

[6] Ilja Behnke, Lauritz Thamsen, and Odej Kao. 2019. Héctor: A Framework for
Testing IoT Applications Across Heterogeneous Edge and Cloud Testbeds. In
Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing Companion (UCC ’19). 15–20.

[7] David Bermbach, Frank Pallas, David García Pérez, Pierluigi Plebani, Maya
Anderson, Ronen Kat, and Stefan Tai. 2018. A Research Perspective on Fog
Computing. In Proceedings of the 2nd Workshop on IoT Systems Provisioning and
Management for Context-Aware Smart Cities (ISYCC 2018). 198–210.

[8] Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi Bozkurt, Anthony Aguirre,
Balakrishnan Chandrasekaran, P Brighten Godfrey, Gregory Laughlin, Bruce
Maggs, and Ankit Singla. 2018. Gearing up for the 21st Century Space Race.
In Proceedings of the 17th ACM Workshop Hot Topics in Networks (HotNets ’18).
113–119.

[9] Debopam Bhattacherjee, Simon Kassing, Melissa Licciardello, and Ankit Singla.
2020. In-orbit Computing: An Outlandish thought Experiment?. In Proceedings
of the 19th ACM Workshop Hot Topics in Networks (HotNets ’20). 197–204.

[10] Debopam Bhattacherjee and Ankit Singla. 2019. Network Topology Design at
27,000 km/hour. In Proceedings of the 15th International Conference on Emerging
Network Experiments And Technologies (CoNEXT ’19). 341–354.

[11] Vaibhav Bhosale, Ketan Bhardwaj, and Ada Gavrilovska. 2020. Toward Loosely
Coupled Orchestration for the LEO Satellite Edge. In Proceedings of the 3rd
USENIX Workshop Hot Topics in Edge Computing (HotEdge ’20).

[12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. In Proceedings of the 1st Edition
of the MCC Workshop on Mobile Cloud Computing (MCC ’12). 13–16.

[13] Jon Brodkin. 2021. Starlink dishes go into “thermal shutdown” once they hit 122°
Fahrenheit. https://arstechnica.com/information-technology/2021/06/starlink-
dish-overheats-in-arizona-sun-knocking-user-offline-for-7-hours/. Accessed:
2021-6-20.

[14] Owen Brown, Paul Eremenko, and Paul Collopy. 2009. Value-Centric Design
Methodologies for Fractionated Spacecraft: Progress Summary from Phase I of
the DARPA System F6 Program. In Proceedings of the AIAA SPACE 2009 Conference
& Exposition.

[15] Arthur C. Clarke. 1945. Exta-Terrestrial Relays – Can Rocket Stations Give
World-wide Radio Coverage? Wireless World LI, 10 (1945), 305–308.

[16] ns–3 Consortium. 2011. ns–3 Discrete Event Simulator. https://www.nsnam.org/.
Accessed: 2021-9-3.

[17] Antonio Coutinho, Fabiola Greve, Cassio Prazeres, and Joao Cardoso. 2018.
Fogbed: A Rapid-Prototyping Emulation Environment for Fog Computing. In
Proceedings of the 2018 IEEE International Conference on Communications (ICC).
1–7.

[18] Olivier de Weck, Uriel Scialom, and A Siddiqui. 2004. Optimal Reconfiguration
of Satellite Constellations with the Auction Algorithm. In Proceedings of the 22nd
AIAA International Communications Satellite Systems Conference & Exhibit 2004
(ICSSC).

[19] Edsger W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs.
Numer. Math. 1, 1 (1959), 269–271.

[20] Jason A. Donenfeld. 2017. Wireguard: Next Generation Kernel Network Tunnel.
In Proceedings of the 2017 Network and Distributed System Security (NDSS). 1–12.

[21] Scott Eisele, Geoffrey Pettet, Abhishek Dubey, and Gabor Karsai. 2017. Towards
an Architecture for Evaluating and Analyzing Decentralized Fog Applications.
In Proceedings of the 2017 IEEE Fog World Congress (FWC). 1–6.

[22] Hewlett Packard Enterprise. 2021. HPE Spaceborne Computer. https://www.hpe.
com/us/en/compute/hpc/supercomputing/spaceborne.html. Accessed: 2021-11-
8.

[23] ETSI, GS MEC. 2022. V3.1.1: Multi-Access Edge Computing (MEC); Framework
and Reference Architecture. Technical Report. Sophia Antipolis CEDEX, France:
European Telecommunications Standards Institute.

[24] Eric Florenzano, Tyler Hobbs, Eric Evans, and Jon Hermes. 2019. Twissandra.
https://github.com/twissandra/twissandra.

[25] Robert W. Floyd. 1962. Algorithm 97: Shortest Path. Commun. ACM 5, 6 (1962),
345.

[26] Jeff Foust. 2019. SpaceX’s space-Internet woes: Despite technical glitches, the
company plans to launch the first of nearly 12,000 satellites in 2019. IEEE Spectrum
56, 1 (2019), 50–51.

[27] Frank I. Gonzalez, HankM.Milburn, Eddie N. Bernard, and Jean C. Newman. 1998.
Deep-Ocean Assessment and Reporting of Tsunamis (DART): Brief Overview and
Status Report. In Proceedings of the International Workshop on Tsunami Disaster
Mitigation. 19–22.

[28] Google Cloud. 2022. Compute Engine Pricing. https://cloud.google.com/compute/
all-pricing. Accessed: 2022-03-12.

[29] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. 2016. Incre-
mental Consistency Guarantees for Replicated Objects. In 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 16). 169–184.

[30] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar Buyya.
2017. iFogSim: A Toolkit for Modeling and Simulation of Resource Management
Techniques in the Internet of Things, Edge and Fog Computing Environments.
Software: Practice and Experience 47, 9 (2017), 1275–1296.

[31] Mark Handley. 2018. Delay is Not an Option: Low Latency Routing in Space.
In Proceedings of the 17th ACM Workshop Hot Topics in Networks (HotNets ’18).
85–91.

[32] Mark Handley. 2019. Using Ground Relays for Low-Latency Wide-Area Routing
in Megaconstellations. In Proceedings of the 18th ACM Workshop Hot Topics in
Networks (HotNets ’19). 125–132.

[33] Jonathan Hasenburg, Martin Grambow, and David Bermbach. 2021. MockFog
2.0: Automated Execution of Fog Application Experiments in the Cloud. IEEE
Transactions on Cloud Computing (2021).

[34] Jonathan Hasenburg, Martin Grambow, Elias Grünewald, Sascha Huk, and David
Bermbach. 2019. MockFog: Emulating Fog Computing Infrastructure in the
Cloud. In Proceedings of the First IEEE International Conference on Fog Computing
2019 (ICFC 2019). 144–152.

[35] Jonathan Hasenburg, Sebastian Werner, and David Bermbach. 2018. FogExplorer.
In Proceedings of the 19th International Middleware Conference, Demos, and Posters
(Middleware 2018). 1–2.

[36] Jonathan Hasenburg, Sebastian Werner, and David Bermbach. 2018. Supporting
the Evaluation of Fog-based IoT Applications During the Design Phase. In Pro-
ceedings of the 5th Workshop on Middleware and Applications for the Internet of
Things (M4IoT 2018). 1–8.

[37] Raoufeh Hashemian, Niklas Carlsson, Diwakar Krishnamurthy, and Martin Ar-
litt. 2019. WoTbench: A Benchmarking Framework for the Web of Things. In
Proceedings of the 9th International Conference on the Internet of Things (IoT 2019).
1–4.

[38] Raoufehsadat Hashemian, Niklas Carlsson, Diwakar Krishnamurthy, and Martin
Arlitt. 2020. Contention Aware Web of Things Emulation Testbed. In Proceedings
of the ACM/SPEC International Conference on Performance Engineering (ICPE ’20).
246–256.

[39] Felix R. Hoots and Ronald L. Roehrich. 1980. Models for Propagation of NORAD
Element Sets. Technical Report. Aerospace Defense Command Peterson AFB CO
Office of Astrodynamics.

[40] Rong Hu, Fangxin Fang, Christopher C. Pain, and Ionel Michael Navon. 2019.
Rapid Spatio-Temporal Flood Prediction and Uncertainty Quantification Using a
Deep Learning Method. Journal of Hydrology 575 (2019), 911–920.

[41]]iridiumcertus Iridium Communications Inc. [n. d.]. Iridium Certus®100. https:
//www.iridium.com/services/iridium-certus-100/. Accessed: 2022-03-04.

[42] Harry Jones. 2018. The Recent Large Reduction in Space Launch Cost. In Pro-
ceedings of the 48th International Conference on Environmental Systems.

[43] Simon Kassing, Debopam Bhattacherjee, André Baptista Águas, Jens Eirik
Saethre, and Ankit Singla. 2020. Exploring the “Internet from Space” with
Hypatia. In Proceedings of the ACM Internet Measurement Conference (IMC ’20).
214–229.

[44] Hemani Kaushal and Georges Kaddoum. 2017. Optical Communication in Space:
Challenges and Mitigation Techniques. IEEE Communications Surveys Tutorials
19, 1 (2017), 57–96.

[45] Benjamin Kempton and Anton Riedl. 2021. Network Simulator for Large Low
Earth Orbit Satellite Networks. In Proceedings of the 2021 IEEE International
Conference on Communications (ICC). 1–6.

[46] Steve Koontz, Robert Suggs, JohnAlred, EricaWorthy, Courtney Steagall,William
Hartman, Benjamin Gingras, William Schmidl, and Paul Boeder. 2018. The
International Space Station Space Radiation Environment: Avionics systems
performance in low-Earth orbit Single Event Effects (SEE) environments. In
Proceedings of the 48th International Conference on Environmental Systems.

https://arstechnica.com/information-technology/2021/06/starlink-dish-overheats-in-arizona-sun-knocking-user-offline-for-7-hours/
https://arstechnica.com/information-technology/2021/06/starlink-dish-overheats-in-arizona-sun-knocking-user-offline-for-7-hours/
https://www.nsnam.org/
https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html
https://www.hpe.com/us/en/compute/hpc/supercomputing/spaceborne.html
https://github.com/twissandra/twissandra
https://cloud.google.com/compute/all-pricing
https://cloud.google.com/compute/all-pricing
https://www.iridium.com/services/iridium-certus-100/
https://www.iridium.com/services/iridium-certus-100/

Testing LEO Edge Software Systems with Celestial

[47] Avinash Lakshman and Prashant Malik. 2010. Cassandra: A Decentralized Struc-
tured Storage System. Operating Systems Review 44, 2 (2010), 35–40.

[48] Marilynn Livingston and Quentin F Stout. 1990. Perfect dominating sets. Con-
gressus Numerantium 79 (1990), 187–203.

[49] Ruben Mayer, Leon Graser, Harshit Gupta, Enrique Saurez, and Umakishore
Ramachandran. 2017. EmuFog: Extensible and Scalable Emulation of Large-
Scale Fog Computing Infrastructures. In Proceedings of the 2017 IEEE Fog World
Congress (FWC). 1–6.

[50] Christian Meinig, Scott E. Stalin, Alex I. Nakamura, and Hugh B. Milburn. 2005.
Real-Time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System:
The NOAA DART II Description and Disclosure. Technical Report. NOAA, Pacific
Marine Environmental Laboratory (PMEL).

[51] Joseph Nedeau, Dan King, Denise Lanza, Ken Hunt, and Lester Byington. 1998.
32-bit Radiation-Hardened Computers for Space. In Proceedings of the 1998 IEEE
Aerospace Conference Proceedings (Cat. No.98TH8339). 241–253 vol.2.

[52] Frank Pallas, Philip Raschke, and David Bermbach. 2020. Fog Computing as
Privacy Enabler. IEEE Internet Computing 24, 4 (2020), 15–21.

[53] Tobias Pfandzelter and David Bermbach. 2020. tinyFaaS: A Lightweight FaaS
Platform for Edge Environments. In Proceedings of the 2020 IEEE International
Conference Fog Computing (ICFC 2020). 17–24.

[54] Tobias Pfandzelter and David Bermbach. 2021. Edge (of the Earth) Replication:
Optimizing Content Delivery in Large LEO Satellite Communication Networks.
In Proceedings of the 21st IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGrid 2021). 565–575.

[55] Tobias Pfandzelter and David Bermbach. 2022. Celestial: Virtual Software System
Testbeds for the LEO Edge. In Proceedings of the 23rd International Middleware
Conference (Middleware ’22).

[56] Tobias Pfandzelter and David Bermbach. 2022. QoS-Aware Resource Placement
for LEO Satellite Edge Computing. In Proceedings of the 6th IEEE International
Conference on Fog and Edge Computing (ICFEC 2022).

[57] Tobias Pfandzelter, Jonathan Hasenburg, and David Bermbach. 2021. Towards a
Computing Platform for the LEO Edge. In Proceedings of the 4th International
Workshop on Edge Systems, Analytics and Networking (EdgeSys 2021). 43–48.

[58] Tereza Pultarova. 2015. Telecommunications – Space tycoons go head to head
over mega satellite Network [News Briefing]. Engineering & Technology 10, 2
(2015), 20–20.

[59] Ahmad Safaai-Jazi, HaroonAjaz, andWarren L. Stutzman. 1995. EmpiricalModels
for Rain Fade Time on Ku- and Ka-Band Satellite Links. IEEE Transactions on
Antennas Propagation 43, 12 (1995), 1411–1415.

[60] Michael Sheetz. 2021. Elon Musk blasts Jeff Bezos’ Amazon, al-
leging effort to ‘hamstring’ SpaceX’s Starlink satellite internet.
https://www.cnbc.com/2021/01/26/elon-musk-blasts-jeff-bezos-amazon-
competitor-to-spacexs-starlink-.html. Accessed: 2021-2-24.

[61] Weisong Shi and Schahram Dustdar. 2016. The Promise of Edge Computing.
Computer 49, 5 (2016), 78–81.

[62] Ankit Singla. 2021. SatNetLab: a call to arms for the next global Internet testbed.
ACM SIGCOMM Computer Communication Review 51, 2 (2021), 28–30.

[63] Amelia Williamson Smith. 2019. Supercomputing in Space: HPE’s Space-
borne Computer Returns After a Successful 1.5-Year Mission on the ISS Na-
tional Lab. https://www.issnationallab.org/iss360/supercomputing-in-space-
hpes-spaceborne-computer-returns/. Accessed: 2021-11-8.

[64] Reginald L. Smith-Rose. 1950. The Speed of Radio Waves and Its Importance in
Some Applications. Proceedings of the Institute of Radio Engineers 38, 1 (1950),
16–20.

[65] Jennifer Sokolowsky. 2020. Azure Space Partners Bring Deep Expertise to New
Venture. https://news.microsoft.com/transform/azure-space-partners-bring-
deep-expertise-to-new-venture/. Accessed: 2022-03-08.

[66] Peter Stauning, Pål Davidsen, and Mathias Cyamukungu. 2004. Detection of
Radiation-Induced Anomalies in the Memory Circuits of the Ørsted LEO Satellite.
In Proceedings of the 35th COSPAR Scientific Assembly. 3974.

[67] Chia-Jiu Wang. 1993. Structural Properties of a Low Earth Orbit Satellite Constel-
lation – the Walker Delta Network. In Proceedings of MILCOM ’93 - IEEE Military
Communications Conference. 968–972 vol.3.

[68] Shangguang Wang, Qing Li, Mengwei Xu, Xiao Ma, Ao Zhou, and Qibo Sun.
2021. Tiansuan Constellation: An Open Research Platform. preprint (2021).

[69] Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric Allman, John
Wawrzynek, Edward Lee, and John Kubiatowicz. 2015. The Cloud is Not Enough:
Saving IoT from the Cloud. In Proceedings of the 7th USENIX Workshop Hot Topics
in Cloud Computing (HotCloud ’15).

[70] Zhenjiang Zhang, Wenyu Zhang, and Fan-Hsun Tseng. 2019. Satellite Mobile
Edge Computing: Improving QoS of High-Speed Satellite-Terrestrial Networks
Using Edge Computing Techniques. IEEE Networks 33, 1 (2019), 70–76.

https://www.cnbc.com/2021/01/26/elon-musk-blasts-jeff-bezos-amazon-competitor-to-spacexs-starlink-.html
https://www.cnbc.com/2021/01/26/elon-musk-blasts-jeff-bezos-amazon-competitor-to-spacexs-starlink-.html
https://www.issnationallab.org/iss360/supercomputing-in-space-hpes-spaceborne-computer-returns/
https://www.issnationallab.org/iss360/supercomputing-in-space-hpes-spaceborne-computer-returns/
https://news.microsoft.com/transform/azure-space-partners-bring-deep-expertise-to-new-venture/
https://news.microsoft.com/transform/azure-space-partners-bring-deep-expertise-to-new-venture/

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Large LEO Satellite Communication Networks
	2.2 Bringing Compute to the LEO Edge
	2.3 Open Challenges in Building and Testing LEO Edge Software Systems on Earth
	2.4 Related Work

	3 Emulating the LEO Edge with Celestial
	3.1 Accurate Emulation of LEO Constellations
	3.2 Support for Arbitrary Software Systems
	3.3 Cost-Efficient Scalability

	4 Deploying an Edge Application on Celestial
	4.1 Experiment Setup
	4.2 Results

	5 Case Study: Real-Time Ocean Environment Alerts With Remote Sensors
	5.1 Experiment Setup
	5.2 Results
	5.3 Opportunities and Implications for LEO Edge Applications

	6 Case Study: LEO Edge Deployment for a Web Application
	6.1 Experiment Setup
	6.2 Results
	6.3 Implications for LEO Edge Web Applications

	7 Discussion & Future Work
	7.1 Limits to Scalability
	7.2 Resource Isolation in microVM Collocation
	7.3 Impact of microVM Suspension
	7.4 Assumptions on Hardware Architecture
	7.5 Emulating External Factors
	7.6 Lack of Validation Data
	7.7 Future Work on LEO Edge Systems
	7.8 Feasibility of the LEO Edge

	8 Conclusion
	Acknowledgments
	References

